Top-Down BASIC
for the TRS-80
Color Computer

Top-Down BASIC
for the TRS-80
Color Computer

By Ken Skier

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogota Hamburg Johannesburg London Madrid
Mexico Montreal New Dethi Panama Paris
Sao Paulo Singapore Sydney Tokyo Toronto

The author of the programs provided with this book has carefully reviewed them to
ensure their performance in accordance with the specifications described in the book.
Neither the authors nor BYTE/McGraw-Hill, however, makes any warranties
whatever concerning the programs. They assume no responsibility or liability of any
kind for errors in the programs or for the consequences of any such errors. The
programs are the sole property of the author and have been registered with the United
States Copyright Office.

Library of Congress Cataloging in Publication Data

Skier, Ken.
Top-down BASIC for the TRS-80 color computer.

Bibliography: p.

Includes index.

1. TRS-80 color computer — Programming.
2. Basic (Computer program language) 1. Title.
QA76.8.TI83S55 1982 001.64°24 82-22880
ISBN 0-07-057861-3

Copyright © 1983 by McGraw-Hill, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without the prior written
permission of the publisher.

1234567890 DOC/DOC 89876543

ISBN 0-07-0578L1-3

Edited by Bruce Roberts.

Design and Production Supervision by Ellen Klempner.
Production Editing by Tom McMillan and Peggy McCauley.
Typeset by LeWay Composing Service, Inc.

Printed and Bound by R.R. Donnelley and Sons.

INTRODUCTION

You own a Radio Shack TRS-80 Color Computer? Great! Then you're
probably already familiar with Color BASIC. If you have a 16K Color
Computer, you’ve had a chance to explore Extended Color BASIC, too.
These versions of BASIC are very powerful, and the Color Computer
manuals that came with your system show you how to write programs in
these languages. Gerting Started With Color BASIC and Going Ahead With
Extended Color BASIC are well written books. If you work through them,
you can congratulate yourself on completing an introductory course in
computer programming.

Congratulations! But you don’t have your computer science degree,
yet.

There’s more to computer programming than writing and entering a
bunch of statements that do something when you type RUN. That’s part of
programming — an essential part — but an experienced programmer knows
that getting a program to RUN is just one step in the process. Other steps are
equally important.

To develop as a programmer, you must master these other steps. This
book will guide you through the overall process of programming by showing
you:

® How todesign a program from the top down.

® How to structure your programs so that you can maintain and
extend them.

@ How to write readable programs that are easy to understand.

® How to write programs that are user-friendly: easy to use and hard
to misuse.

® And— oh, yes — how to write programs that RUN.

This book does not replace any books you may already have on the
BASIC programming language. Rather, it builds on what you have learned
from those books, enabling you to develop programs in a much more
organized manner.

I assume you already know many of the common BASIC commands
and functions and that you’ ve mastered the syntax of BASIC. Never heard
the word ‘‘syntax’’? Don’t worry. If you can write a short BASIC program
that runs without error, then you’ve mastered the syntax of BASIC.

But you'’ve still got a lot to learn about the process of programming.

You see, this is not simply a book about BASIC; rather, it’s a book

about program design, intended for the BASIC programmer. Vi

WARNING

Let me make an analogy. The BASIC books you’ve already read
should have taught you the building blocks of BASIC, just as a class in
carpentry can teach you about nails and screws and wood. But carpenters
don’tdesign buildings and bridges; architects do. An architect needs to
understand the nature of materials, but not as an end in itself: he needs it in
order to design elegant structures that work.

When you mature as a programmer, you also become an architect— an
architect of computer programs. This book will teach you how to design
program structures, even very large ones, that work. And just as an architect
defines elegance in terms of usefulness and simplicity, so shall we define
elegance by the usefulness and simplicity of the programs we design.

So, this is not a course in carpentry. It’s a course in architecture — the
architecture of computer programs.

Welcome to the class!

You may be wondering what I mean by top-down design, structured
programming, and the readability of code. I'll introduce you to those
concepts in Chapter 1, but only so you’ll become familiar with the terms.
You won’t really understand those concepts until you read through the
succeeding chapters, where I'll show you what those ideas mean in practice
by exemplifying them in substantial programs.

Will those chapters simply present a number of finished programs that
embody those principles? Nope. Instead, those chapters will actually walk
you through the processof programming, showing you how to begin with
just an idea of what you want a program to do, and then how to refine that
idea, defining the structure of the program, until, finally, you can code the
program in BASIC. As you walk through this process for a number of
different applications, you will come to understand its step-by-step nature
and may ultimately make a similar process part of the way that you write
programs.

Let’s get started.

Displaying the same image on your television set for an extended
period of time — say, more than 15 minutes — can burn the phosphor on
your picture tube.

If you burn the phosphor on your TV set, the burned-in image will
remain on the tube forever.

The author and publisher disclaim any responsibility for such
consequences.

To reduce the risk of burning the phosphor on your picture tube, turn
down the brightness on your TV set. The lower the brightness level, the
longer it will take to burn the phosphor.

Be especially wary of any program whose display is essentially
unchanging, in whole or in part of the picture tube. Some of the programs in
this book have such displays. (The rim of the clock program in Chapter 9, for
example, never changes.)

Therefore, never leave a display on the screen unless you’re watching
it. If you’re leaving the room, turn off the TV set or turn it to another

COPYRIGHT

CASSETTES AND DISKS

TRADEMARKS

channel, a channel over which your television set may receive a normal
broadcast signal. Even better, turn off your Color Computer system
altogether.

I’ve never burned the phosphor on my TV set, and I’ ve run some of
these programs for hours at atime, but TV sets and tubes vary, so be
forewarned.

You may enter the programs listed in this book into your Color
Computer and store them on cassette or disk for your own use. However,
you may not distribute copies of any of these programs to any other party,
via magnetic or printed media, telecommunications, or any other method.

If you would rather not type the programs listed in this book into your
Color Computer, you may purchase them on cassette or disk from:

SkiSoft, Inc.
P.O.Box 379
Cambridge, MA 02238-0379

For information on ordering these programs, see Appendix 5.

Radio Shack and TRS-80 are registered trademarks of the Tandy
Corporation.

Color BASIC and Extended Color BASIC are registered trademarks of
Microsoft Inc.

BASIC is a trademark of the trustees of Dartmouth College.

Getting Started With Color BASIC and Going Ahead With Extended
Color BASIC are published by Tandy Corporation.

ETCH A SKETCH® is a registered trademark of The Ohio Art
Company. ’

TABLE OF CONTENTS

— ot

SAE S

tToooN

Whatis Top-Down, User-Friendly, Readable Programming? 1

Programs For 4K or 16K COLOR BASIC Systems

Sleepwalker:

Maze Maker:
Enhanced Maze Maker:
Maze Runner:

Artillery:

Animating Graphics 25

Editing Graphics 43

Saving and Restoring Graphics 59
Competing Against the Clock 85
Simulating Gravity and Gunpowder 107

Programs For 16K EXTENDED COLOR BASIC Systems

Arithmetic Tester:

A Clock With Hands:
Fancy Clocks:

X,Y Function Plotter:
The Plot Thickens:

Appendices

Ordering from the Menu 133
Configuring a Model 167

Adding Sound and Motion 195
Displaying Mathematical Curves 239
Parametric and Polar Functions 263

Reserved Words in Color BASIC 309
Reserved Words in Extended Color BASIC 310

ASCIl Character Codes

311

Suggested Reading 313
Ordering These Programs on Cassette or Disk 314

Index 315

Chapter 1:

TOP-DOWN DESIGN

THE USER INTERFACE

What is Top-Down, User-Friendly, Readable Programming? / 1

WHAT IS TOP-DOWN,
USER-FRIENDLY,
READABLE PROGRAMMING?

You may have heard the term ‘‘structured programming’’ or the phrase
“‘program structure.”” Although we haven’t defined them, you may already
have a sense of what they mean. Just as a book is more than a bunch of
words, and a house is more than a bunch of bricks, so is a program more than
just a bunch of statements in some computer language.

Every program has a purpose, and whenever we create something with
a purpose, the thing we create has some form, a structure, designed to
accomplish that purpose. This is true of anything people create, from houses
to hand tools, from bicycles to blimps. When the human mind creates
something with a purpose, that thing has a suitable structure. Or, as Frank
Lloyd Wright’s mentor Louis Sullivan said, ‘‘Form follows function.”’ He
was talking about architecture, but what he said was true of everything the
human mind creates, including computer programs.

A house may be composed of many small things such as bricks, nails,
boards, shingles, and panes of glass. But if you are an architect designing a
house, you won’t start by thinking about the thousands of shingles and nails
that will go into it. Instead of thinking of these many small items, you’ll
think in terms of the larger, structural units of the house: the foundation, the
walls, the roof. Only when you’ve sketched out a picture of the house
showing these large, structural units will you go into detail and design the
smaller items from which you will build the foundation, floors, etc. Even-
tually you’ll design each wall, doorway, and window, but that fine, detailed
work comes last, after the broad outline is complete.

What I’ ve just described is called top-down design, which begins with
the broadest possible outline, or sketch, and moves ultimately to the most
detailed design, or blueprint. Only the last, most detailed blueprint concerns
itself with the smallest things, the discrete units that go into the house: the
shingles, nails, bricks, and panes of glass.

Similarly, you can design a program from the top down. Begin by
thinking about the things that a program should do, and write down those
things in the order in which they should occur. Don’t go into detail describ-

2/What is Top-Down, User-Friendly, Readable Programming?

FLOWCHARTS

ing the things your program should do; just jot down brief descriptions or
labels.

For example, let’s say you want to write a program that calculates the
square and cube of a given number. You might write down the following list
of things the program will do:

CUBE-SQUARE CALCULATOR

GET A NUMBER FROM THE USER.
CALCULATE ITS SQUARE.
CALCULATE ITS CUBE.

PRINT THE RESULTS.

Note that this program description reads like English, not like BASIC.
Of course, this program description could be used by someone to write a
BASIC program, but it could equally well be used to write a program in
FORTRAN, in machine language, or in any other programming language.
The program description is not a program; it’s a general description of what
the program does from the point of view of the user. It doesn’t matter whether
we implement that program description in BASIC or in FORTRAN or in any
other computer language; when we RUN the program the person using it will
see exactly the same things happen.

In the computer industry, we have a name for what you see and do when
you’re running a program. We call it the user interface. Whena professional
programmer sits down to design a program, it is likely that he or she will
begin by defining the user interface. After all, you can’t write a program to
do something unless you know exactly what the program is supposed to do.

Many beginning programmers overlook this step and launch right into
writing lines of BASIC or some other program language. That would be as
misguided as an architect starting to design a house by drawing a picture of
two boards and shingle. You can’t even begin to think about boards and
shingles until you know whether you’re designing aranchor a colonial or an
apartment house. You must know how the occupants intend to use the house
before you can design its fundamental structure. And you must understand
its fundamental structure before you can figure out where the boards and
shingles go.

The same thing is true of programming. Form follows function.

So a programmer writes down the user interface (or it is givento the
programmer as a specification to be fulfilled) and the programmer looks at it
for a while:

CUBE-SQUARE CALCULATOR

GET A NUMBER FROM THE USER.
CALCULATE ITS SQUARE.
CALCULATE ITS CUBE.

PRINT THE RESULTS.

What is Top-Down, User-Friendly, Readable Programming? / 3

. . and then the programmer takes a pencil and starts to draw lines about
each of the things the program is supposed to do. See Figure 1.1.

GET A NUMBER FROM THE USER.

CALCULATE ITS SQUARE.

CALCULATE ITS CUBE.

PRINT THE RESULTS.

Figure1.1: Cube-Square Calculator.

Having drawn boxes about each of the things the program is supposed
to do, the programmer joins the boxes with vertical lines, indicating the start
and end of the program with labeled circles. (See Figure 1.2.)

START

GET A NUMBER FROM THE USER.

|

CALCULATE ITS SQUARE.

CALCULATE TS CUBE.

PRINT THE RESULTS.

Figure1.2: Cube-Square Calculator, step two.

If you’re the programmer who’s drawn these boxes and circles and
connecting lines, you won’t call it a program description or a user interface

4/What is Top-Down, User-Friendly, Readable Programming?

STRAIGHT-LINE CODE

anymore; you’'ll call it a flowchart. Each of the boxes represents a thing that
the program should do: an operation. The flowchart shows the sequence of
operations, or the entire process, using connecting lines to guide your eye
from box to box, thus revealing the order of operations.

Like a program description, a flowchart is not a program itself and may
be turned into a program written in any computer language. BASIC pro-
grammers draw flowcharts, as do machine-language programmers, FOR-
TRAN programmers, and many other programmers who want to see graphi-
cally the things a program will do and the order in which it will do them.

In a way, flowcharts are similar to board games in which you move a
piece, or token, from square to square. In a flowchart, the computer
executing the program performs the operation described in one square and
then moves on to the next.

How do we know which is the next square? We always assume that the
flow of control is down (when a vertical line connects two boxes) or to the
right (when a horizontal line connects two boxes). If the flow is ever up or to
the left, that unconventional direction must be indicated explicitly with one
or more arrows (as you’ll see when we begin developing more advanced
program structures involving loops and decision nodes). No arrows are
needed when the flow from one box to the next is down or to the right.

Figure 1.2 shows what we call straight-line code, because the connect-
ing lines all go in a straight line, with one action following another from start
to end. Straight-line code is the simplest of all program structures.

Given that you’ve drawn a flowchart such as Figure 1.2, how would
you turn it into a program? First you must decide what program language
you will use. I'll assume that you wish to write it in Microsoft Color BASIC,
for the TRS-80 Color Computer. Now look at each box in the flowchart, and
write one or more lines of BASIC that will accomplish the action stated in
the box.

Listing 1.1 shows one implementation of Figure 1.2 as a BASIC
program.

182 INPUT X
110 Y=X#X
120 7=Y¥X#X
138 PRINT Y
140 PRINT 1
156 END

Listing1.1: Cube-Square Calculator.

That’s a terrible program!
About all you can say for it is that it works, if you know exactly what to
expect when you use it. But that’s a poor review for any program. What

USER-FRIENDLINESS

What is Top-Down, User-Friendly, Readable Programming? / &

makes this piece of code so terrible is that it’s hard to use and hard to
understand. Or, to use the terminology of the computer industry, it’s not
user-friendly and it’s not readable. We’ll discuss the issue of readability
shortly, but now let me show you why the Cube-Square Calculator in Listing
1.11is not very user-friendly.

A friendly program, like a friendly person, introduces himself and lets
you know what he can do for you. What does the program in Listing 1.1 tell
you? Nothing.

Run the Cube-Square Calculator in Listing 1.1 and a question mark
appears on the screen. That’s it. Notitle, no introduction, no prompt. Just a
question mark. If you’re at the keyboard, you must krnow that a question
mark means the computer is waiting for you to INPUT something. But even
if you know what a question mark means, it doesn’t help you much. What
does the program want you to INPUT? You can’t tell. Unless you know in
advance what the program wants, you must guess. It displays no prompts,
no hints.

But let’s say you know that the program wants you to INPUT a number
(as opposed to a string) . You type in, say, 5 and press (ENTER).

In an instant, the Color Computer prints two numbers directly under-
neath yours. The screen now looks like Figure 1.3.

Figure1.3

What do these numbers represent? You don’tknow. The program doesn’t
say. That’s not user-friendly; it’s downright inscrutable.

Let’s make our Cube-Square Calculator friendlier to the user. See
Listing 1.2.

6/What is Top-Down, User-Friendly, Readable Programming?

108 (A5

11@ PRINT "I'LL CALCWLATE THE SQUARE®

128 PRINT "AND CUBE OF A NUMBER.®

138 PRINT

14@ PRINT "TYPE IN A NUMBER AND PRESS ENTER'
150 INPUT X

160 Y=X&X

178 1=XeX¥X

180 PRINT “THE SGUARE OF-"3 X; " I8 "3
198 PRINT "THE CUBE OF *3 X3 * I8 "3 1
200 END

Listing 1.2: Cube-Square Calculator with title and prompt.

Y

This version of the Cube-Square Calculator is much friendlier to the
user. Let me demonstrate. When you type RUN and press (ENTER), it clears
the screen and introduces itself, telling you what it can do for you:

I‘LL CALCULATE THE SQUARE
AND CUBE OF A NUMBER

Figurei.4

Then it goes on to tell you what you should do:

I‘LL CALCULATE THE SQUARE
AND CUBE DF A NUMBER,

TYPE IN A NUMBER AND PRESS ENTER
T a

Figure1.5

What is Top-Down, User-Friendly, Readable Programming?/ 7

You follow its instructions by typing in, for example, 5 and pressing
(ENTER).

The program then performs its calculations and prints its results. It
doesn’tjust print a mysterious pair of numbers, it tells you what they mean.

I’LL CALCULATE THE SQUARE
AND CUBE OF A NUMBER.

TYPE IN A NUMBER AND PRESS ENTER
? 5

THE SQUARE OF 5

THE CUBE OF 5 IS

oK
n

G

Figure 1.6

THE SQUARE OF 5 IS 25...THE CUBE OF 5 IS
125 — that’s clear! Polite. User-friendly. Even if you have no idea
what this program will do, once you type RUN and press (ENTER), you’ll
have no trouble using it. For example, the prompt TYPE IN A
NUMBER AND PRESS ENTER is designed so that someone who
has never used a computer can enter the number properly. If the prompt
said only INPUT THE NUMBER or ENTER THE NUMBER,a
novice might type the number but never get around to pressing (ENTER).
The prompt in Listing 1.2, however, is so precise that it virtually holds
your hand, telling you what keys to press.

Listing 1.1 is a program that only its author could use, and then only
for a brief period before forgetting what it does, what input it expects,
and what its output means. In contrast, Listing 1.2 presents a program
that even someone who’s never seen it before can use. That’s the best test
of user-friendliness: a user-friendly program can be used without difficul-
ty by a novice.

To use the best programs — the most user-friendly — you need NO
documentation and NO training.

Now let’s get to the issue of readability.

8/What is Top-Down, User-Friendly, Readable Programming?

READABILITY

No doubt you’ve heard the expression, ‘‘coding a program’” as in *‘I’ll
be down to dinner in a minute! I'm coding a program.’’ Butcoding a
program is not like coding a CIA communiqué for a secret agent in the field.
A secret agent’s code is meant to be incomprehensible, so it will reveal its
meaning only when deciphered by the intended party. But coding a program
is something quite different. Coding a program means putting it into a form
that the computer will understand. That’s necessary, but it doesn’t mean you
have to make it hard for people to understand, too.

When you write a program you are writing it not just for a machine but
for human readers as well — most importantly, for yourself. After all, if you
can’t understand a program you’ve written, who else can? And if you can’t
understand it, how can you know what lines to change if it turns out the
program has abug, or if — as often happens — you wish to modify it at some
later date to make it serve different functions?

With smaller programs, readability might not matter, but with larger
programs it becomes essential. After a program growstoa certain size —
say, twenty lines — you will probably never make it work if you can’tread it
easily. So readability is not just an admirable but nonessential goal like good
penmanship: it’s a top priority if you are to write programs that work.

What do I mean by readability?

A program is readable if you can LIST it and read through the listing
without wondering, ‘‘What is the purpose of this program? What is its
structure? What does this variable represent? Why is this line doing this?
Where is this program going?’’ These reactions are all variations of the
question, ‘‘What’s going on here?’” If you can read through a program
without finding yourself asking that question, then you know you’re looking
at a readable program. The more often you ask that question, the less
readable the program.

You've been reading English for a long time now, and you know that
you can understand a well-written paragraph by reading it once; you don’t
have to reread it. A good writer works long and hard at his or her craft, so
that people won’t have to reread. What is true of English is equally true of
BASIC. You should be able to LIST a program, read it once, and understand
it. You may reread certain lines in order to gain a greater appreciation of
what they do, but you won’t have to read the whole program twice before
you begin to comprehend it.

What makes a program readable? There are many factors. Noris there
one proper way to write a readable program, any more than there is one
proper way to write a readable paragraph. There is such a thing as an
author’s style in a program listing as well as in an essay ora work of fiction.
There are different programming styles, each of which may resultin a
readable listing. Here are some factors that | consider important.

® Remarks

® Variable names

@ Line numbering

® Multiple statements per line
@ Indentation

® Use of Subroutines

Remarks

What is Top-Down, User-Friendly, Readable Programming? / 9

Let’s take a look at each of these factors.

Imagine that you’ve never seen the Cube-Square Calculator before,
and take another look at Listing 1.2. Can you tell what purpose the program
serves? That should be obvious, because the first few lines of the program
tell you:

100 CLS
119 PRINT *I1‘'LL CALCULATE THE SQUARE™
120 PRINT "AND CUBE OF A NUMBER."

We might call the two PRINT statements in lines 110 and 120 a form of
internal documentation, documentation that exists as part of the program.
Internal documentation is one way to make a program readable. But you
can’talways document a program internally with PRINT statements. What
should you do then? Use remarks. Remarks can make a program understand-
able to the programmer, who LISTs the program. They will never be seen by
the user, who RUNs the program.

What happens when the BASIC interpreter encounters a remark?
Nothing! It ignores the remark and anything that follows the remark on that
line. From the computer’s point of view, there are two kinds of remarks:
REM and apostrophe (). Listing 1.3 demonstrates how the Color Computer
ignores remarks that consist of REMs.

100 REM THIS IS IGNORED,
110 PRINT °HI THERE,®

120 REM PRINT "HOW ARE YOU?*
138 END

Listing 1.3: Demonstration of *REM" remarks.

When you run this program, the computer prints:
HI THERE.
But it doesn’t print
HOW ARE YOU?
Instead, after printing HI THERE itprints:
OK
—_toindicate that the Color Computer is once again in the immediate mode.

The Color Computer did nothing at all with lines 100 and 120, because each
of those lines begins with a REM.

