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Preface

Only in the simplest cases do physicists use exact solutions, u(x), of
problems involving temporally evolving'systems. Usually they use asymp-
totic solutions of the type

u(v,x) = a(v, x)eve), (1)
where

» the phase ¢ is a real-valued function of x e X = R’;
» the amplitude o is a formal series in 1/v,

&1
(Z(v, x) = Z _rar(x)a
r=0 v
whose coefficients %, are complex-valued functions of x;
o the frequency v is purely imaginary.

The differential equation governing the evolution,

a<v, x,li> u(v,x) = 0, (2
vox

is satisfied in the sense that the left-hand side reduces to the product of
e’ and a formal series in 1/v whose first terms or all of whose terms vanish.
The construction of these asymptotic solutions is well known and called
the WKB method:

* The phase ¢ has to satisfy a first-order differential equation that is non-
linear if the operator a is not of first order.

» The amplitude « is computed by integrations along the characteristics
of the first-order equation that defines ¢.

In quantum mechanics, for example, computations are first made as if
V= =" where h is Planck’s constant,

were a parameter tending to ioo; afterwards v receives its numerical value
vo-

Physicists use asymptotic solutions to deal with problems involving
equilibrium and periodicity conditions, for example, to replace problems
of wave optics with problems of geometrical optics. But ¢ has a jump and
x has singularities on the envelope of characteristics that define ¢: for
example, in geometrical optics, o has singularities on the caustics, which
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are the images of the sources of light; nevertheless geometrical optics
holds beyond the caustics.

V. P. Maslov introduced an index (whose definition was clarified by
1. V. Arnold) that described these phase jumps, and he showed by a con-
venient use of the Fourier transform that these amplitude singularities are
only apparent singularities. But he had to impose some “quantum con-
ditions.” These assume that v has some purely imaginary numerical value
Vo, in contradiction with the previous assumption about v, namely, that
v is a parameter tending to ico. The assumption that v tends to ico is
necessary for the Fourier transform to be pointwise, which is essential for
Maslov’s treatment. A procedure, avoiding that contradiction and guided
by purely mathematical motivations, that makes use of the Fourier trans-
Jorm, expressions of the type (1), Maslov’s quantum conditions, and the
datum of a number v, does exist, but no longer tends to define a function
or a class of functions by its asymptotic expansion. It leads to a new
mathematical structure, lagrangian analysis, which requires the datum of a
constant v, and is based on symplectic geometry. Its interest can appear
only a posteriori and could be quantum mechanics. Indeed this structure
allows a new interpretation of the Schrodinger, Klein-Gordon, and Dirac
equations provided

i 2m . X

Yo =4 =0 where h is Planck’s constant.
Therefore the real number 27xi/v, whose choice defines this new mathe-
matical structure can be called Planck’s constant.

The introductions, summaries, and conclusions of the chapters and
parts constitute an abstract of the exposition.

Historical note. In Moscow in 1967 1. V. Arnold asked me my thoughts
on Maslov’s work [ 10, 11]. The present book is an answer to that question.

It has benefited greatly from the invaluable knowledge of J. Lascoux.

It introduces v, for defining lagrangian functions on V (chapter 11, §2,
section 3) in the same manner as Planck introduced # for describing the
spectrum of the blackbody. Thus the book could be entitled

The Introduction of Planck’s Constant into Mathematics.

January 1978
Collége de France
Paris 05
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I The Fourier Transform and Symplectic Group

Introduction

Chapter I explains the connection between two very classical notions: the
Fourier transform and the symplectic group.

It will make possible the study of asymptotic solutions of partial differen-
tial equations in chapter II.

§1. Differential Operators, the Metaplectic and Symplectic Groups

0. Introduction

Historical account. The metaplectic group was defined by I. Segal [14];
his study was taken up by D. Shale [15]. V. C. Buslaev [3, 11] showed
that it made Maslov’s theory independent of the choice of coordinates.
A. Weil [18] studied it on an arbitrary field in order to extend C. Siegel’s
work in number theory.

Summary. We take up the study of the metaplectic group in order to
specify its action on S(RY), #°(R'), and ¥'(R’) (see theorem 2) and its
action on differential operators (see theorem 3.1).

1. The Metaplectic Group Mp(/)

Let X be the vector space R' (I > 1) provided with Lebesgue measure d'x.
Let X * be its dual, and let { p, x> be the value obtained by acting p € X *
onxeX.

Spaces of functions and distributions on X. The Hilbert space #(X ) con-
sists of functions f: X — C satisfying

1] = (j ]f(x)]zd’x>l/2 < .

The Schwartz space ¥ (X) [13] consists of infinitely differentiable,
rapidly decreasing functions f: X — C. That is, for all pairs of l-indices

(g, 7)
1fla.r = Sup lx“(%)rf(x)l < 0.

The topology of #(X) is defined by a countable fundamental system of
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neighborhoods of 0, each depending on a pair of /-indices (g, r) and a
rational number ¢ > 0 as follows:
g r.e) = {f]|f]e., < e}

The bounded sets B of .#(X) are thus all subsets of bounded sets of ¥ (X)
of the following form:

B({bqr}) = {f’ lflq,r < bq,r Vq’ r}» q, 7€ Nl’ bq,r € R+ .

The Schwartz space #'(X) is the dual of ¥ (X) [13]; its elements are
the tempered distributions: such an element f’ is a continuous linear
functional

S(X) - C.

The value of /' on f will be denoted by {y f'(x) f(x) d'x, although the
value of f' at x is not in general defined. The bound of f’ on a bounded
set B in (X)) is denoted by

|f'ls = Sup| f f'(x) f(x) d'x|.
feB x

The continuity of f” is equivalent to the condition that f" is bounded:
[f'|s < co VB. The topology of (X ) s defined by a fundamental system
of neighborhoods of 0, each depending on a bounded set B of #(X ) and
a number ¢ > 0, as follows:

N'B,&) = {f'||f]s < ).

Unlike the above, this topology cannot be given by a countable fundamen-
tal system of neighborhoods of zero.

Let us recall the following theorems. 5# (X ) can be identified with a sub-
space of &'(X):

F(X) = #(X) < LX)

The Fourier transform is a continuous automorphism of %'(X) whose
restrictions to #(X ) and &(X ) are, respectively, a unitary automorphism
and a continuous automorphism.

&(X) is dense in &'(X).
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For the proof of the last theorem, see L. Schwartz [13]: chapter VII, §4,
the commentary on theorem IV, and chapter 111, §3, theorem XV; alter-
natively, see chapter VI, §4, theorem IV, theorem XI and its commentary.

Differential operators associated with elements of Z(I) = X @& X*. Let
v be an imaginary number with argument n/2:v/i > 0.

Let a° be a linear function, a°:Z(l) > R. Let a%(z) = a%(x, p) be its
value at z = x + p[z € Z(l), x € X, p€ X*]. The operator

1¢
_ of 1
a=da (x’véx)

is a self-adjoint endomorphism of #'(X): the adjoint of a, which is an
endomorphism of (X)), is the restriction of a to &(X). The operators a
and the functions a° are, respectively, elements of two vector spaces .« and
o/ °. These spaces are both of dimension 2! and are naturally isomorphic:

A°3a°—ae o.

We say that a is the differential operator associated to a® € &/°. By (1.2),
/%, which is the dual of Z(I), will be identified with Z(I).

The commutator of g and b € ./ is
la,b]l = ab — baeC;
¢ € C denotes the endomorphism of ¥’(X):
c:f-cof Vfe&(X)

In order to study this commutator, we give Z(l) the symplectic structure
[-,-] defined by

[Z, Zl] = <P’ x,> - <Pl, X>,

wherez = x + p,z’ = x' + p,xand x' € X,and pand p' € X *.
Each function a® € .o/ © is defined by a unique element a* in Z (/) such that

a’(z) = [a', z]. (1.1
This gives a natural isomorphism
Z()sa'—ae &°. (1.2)

The commutator of a and b € o/ is clearly



