| ELEMENTS ¢
- MATHEMATICAL LoGIe




The Elements of

Mathematical Logic

PAUL C. ROSENBLOOM

ABSOCIATE PROFESSOR, DEPARTMENT OF MATHEMATICS,
SBYRACUSE UNIVERSITY



PREFACE

This book is intended for readers who, while mature mathe-
matically, have no knowledge of mathematical logic. We at-
tempt to introduce the reader to the most important approaches
to the subject, and, wherever possible within the limitations of
space which we have set for ourselves, to give at least a few
nontrivial results illustrating each of the important methods for
attacking logical problems. Since Lewis’ SURVEY OF SYMBOLIC
LoGgrc and Jgrgensen’s TREATISE ON FORMAL LOGIC, both of
which are now obsolete, the only work of this nature has been
the excellent book of Church, which is not suitable for beginners
and which is not easily accessible. Thus the present book differs
from those which confine themselves to the detailed develop-
ment of one particular system of formal logic. We have empha-
sized instead the modern tendency of analyzing the structure of
a system as a whole. We feel that too many authors in this field
have overlooked the necessity of exhibiting the power of logical
methods in non-trivial problems. Otherwise mathematical logic
is & mere shorthand for transeribing results obtained without its
aid, not a tool for research and discovery.

Thus in the chapter on the logic of classes we have a section
on the structure and representation of Boolean algebras, which
is applied in the next chapter to the study of deductive systems.
In the third chapter we sketch the methods of Russell, Quine,
Zermelo, Curry, and Church for the construction of logics of
propositional functions. Finally, we give a brief introduction
to the general syntax of language, with applications to unde-
cidability and incompleteness theorems.

We have attempted to make the exposition as elementary as
possible throughout. Nevertheless, those who are unfamiliar
with modern algebra may find it advisable to skip the proofs
in Chapter I, Section 3, on the first reading.



In the last chapter we use the profound and beautiful ideas of
Post. We hope that one by-product of this book will be a more
widespread recognition and appreciation of his work, which
amounts to the creation of a new branch of mathematics of the
same fundamental importance as algebra and topology.

The connoisseur may find of some interest (1) the insistence
on the demonstrable properties of a formal system as a criterion
for its acceptability, (2) the simple proof of the completeness of
the theory of combinators,* (3) the simple explicit example of a
recursively unsolvable problem in elementary number theory,
(4) the first connected exposition of all the essential steps in the
proof of Church’s theorem on the recursive unsolvability of the
decision problem for the restricted function calculus.

Much of the material was presented in a course given by the
author at Lund University, Sweden, in the spring of 1948,

It is impossible for me to express adequately my debt to the
late Professor H. B. Smith for his constant kindness and gen-
erosity. I am grateful to Professors Churchman, Post, Curry,
McKinsey, Huntington, and Stone for their friendly encour-
agement when I was beginning my mathematical career. I
cannot refrain from also thanking Professors Cohen and Nagel,
since it was a misinterpretation of a footnote in their book
which led me to abandon chemistry for mathematics twelve
years ago! I thank Dover Publications, Inc. for its unfailing
courtesy and helpfulness during the preparation of this book.
Finally, I should like to express my gratitude to my beloved
wife, Elly, for providing the stimulus and the working condi-
tions without which the book could not have been written.

October 11, 1949 PAUL C. ROSENBLOOM
Syracuse, New York

*Curry has arrived independently at essentially the same simplification
of the theory of combinators. This appeared since the above was written in
Synthése, Vol. VII, 194849, No. 6-A, p. 391-398.



INTRODUCTION

In this book we shall study the laws of logic by mathematical
methods. This may seem unfair, since logic is used in construct-
ing mathematical proofs, and it might appear that the study of
logic should come before the study of mathematics. Such a pro-
cedure is, however, typical of science. Our actual knowledge is a
narrow band of light flanked on both sides by darkness. We
may, on the one hand, go forward and develop further the con-
sequences of known principles. Or else we may press backward
the obscurity in which the foundations of science are enveloped.
Just by using mathematical methods, i.e. by working with ideo-
grams (symbols for ideas) instead of ordinary words (symbols
for sounds), we can throw new and important light on the logical
principles used in mathematics. This approach has led to more
knowledge about logic in one century than had been obtained
from the death of Aristotle up to 1847, when Boole’s master-
piece was published.

We begin with the simplest branch of the subject, the logic of
classes. After an informal introduction, in which we derive the
properties of classes by a free use of naive intuition, we formulate
that theory as a deductive science, that is, a8 a science in which
the assumptions are explicitly stated, and in which everything
else follows from the assumptions by means of explicitly stated
rules. The assumptions are stated in terms of certain notions
which are not analyzed further and are taken as undefined. All
other concepts of the science are defined in terms of these.

We then proceed to a study of the system as a whole. That is,
instead of developing more and more consequences of the as-
sumptions, we try to find general charactcristics of the science
itself. Thisis typical of the modern tendency to emphasige the
siructure of a science, to derive theorems about the science,
rather than to concentrate on the detailed derivation of results

vii



vin

within the science. This study of the structure of the logic of
classes culminates in Chapter I, Section 3.

We then apply the same methods {o the logic of propositions.
In doing this, we uncover a striking similarity between this
science and the logic of classes. It is precisely through formulat-
ing these logics as deductive sciences that we see that both are
special examples of a general theory.

The logic of propositions has been the subject of much con-
troversy among logicians and mathematicians. We discuss the
various alternative approaches which have been proposed.

We then try to construet general logical theories which are
adequate for at least a large part of mathematics. Here we run
into difficulties since the unreined use of naive intuitive reason-
ing leads to devastating paradoxes. Thus we must seek a theory
which admits as much as possible of the reasoning intuitively
accepted as valid, but includes such restrictions as to evade the
paradoxes. But a profound theorem of Godel shows that no
logical theory of a very general type can include methods of
reasoning strong enough for the proof of its own consistency.
Indeed, in any system of logic of this general type, there are
propositions which can be proved by an argument outside the
system but which cannot be proved within the system. Thus no
formal logical system of this type, which includes all adequate
logics so far proposed, can contain all valid modes of reasoning.
All that we can hope for is stronger and stronger systems which
are adequate for more and more powerful arguments, or else
some system radically different from anything so far proposed.

In order to arrive at such results as Gédel’s, it is necessary for
us to scrutinize our tools more closely. In a deductive science
the undefined terms are denoted by certain symbols, which may
be blobs of printer’s ink, speech sounds, printed marks repre-
senting the latter, etc. The propositions of this science are com-
municated by means of these signs. These signs, together with
the rules governing their use and combination, constitute a
language for stating relationships within the science. This is
called the object language. In an exposition of the science the
assumptions must be communicated in a language whose mean-



X
ing is already assumed to be known, say English. This is called
the syniax language. We use the object language to talk within
the science and the syntax language to talk abou! the science.
In ordinary usage the confusion between the two leads to no
difficulty, but when the science under consideration is logic itself
we must lean over backwards to avoid unclarity.

The primitive signs of the object language are called its alpha-
bet. Certain combinations of these signs may be assigned mean-
ings. Such combinations are often called words or sentences. If a
certain combination of signs denotes an object, then this com-
bination will be a name for that object. In speaking about the
object we use a name for it. Thus “Dewey smiled” is a sentence
wherein we mention the man Dewey by using his name, the
word ‘“Dewey.” When we are talking about a name or a symbol,
it is convenient to use a specimen enclosed in quotation marks
as a name of the name or symbol. Thus, ¢ “Dewey”’ "’ is a name of
“Dewey,” which is, in turn, a name of Dewey, who is a man.
Again, on p. 2, 25th line from the bottom, we are speaking about
a name of the universal class, while on the next line it is the nuli
class itself which is mentioned. To avoid the use of names of
names of names and the like, we shall also use such phrases as
““the letter —’* or ‘“‘the sign —’’ as names of the symbols of
which specimens are exhibited. It is often overlooked that while
we cannot put a man on the printed page and are thus forced
to use a name when writing about him, we do have greater
resources when we wish to write about symbols.

In particular, a sentence is a name of a proposition. We shall
say that the sentence erpresses the proposition, and we shall
often use ‘“‘statement’ as a synonym for “sentence.” We shall
often use the phrase “the proposition that p” to indicate the
proposition expressed by “p.” Careful attention to these matters
helps in discussing ticklish questions.

We are thus led, in chapter IV, to the mathematical analysis of
language. Whereas in the previous chapters our attention is
centered on the relationships expressed by the object language,
in the last chapter we focus our attention on the structure of the
language apart from its meaning. The former process is some-
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times called the semantical study of language, i.e. the study of
the meanings cxpressed by the language, while the latter is often
called the syntactical study of the language. The methods we
use were developed especially by Post. We find in this chapter
that certain classes of languages, which include practically all
languages which have heen preciscly formulated, can be singled
out and possess important common properties. It is exactly the
mathematical method of abstracting from the special features of
particular languages which enables us to prove rigorously a
number of profound general truths, where metaphysicians would
argue back and forth for centuries without ever reaching a con-
clusion which could be tested.

Mathematical logic is, then, no mere shorthand for expressing
in ideograms what has already been discovered by reasoning in
ordinary language. It is, rather, a powerful and versatile tool for
solving problems which are inaccessible to other methods.

In the following we shall make references thus:

I1I2  denotes section 2 of chapter 11I;

T2 denotes theorem 2 of the present section;

T5.2.3 depotes theorem 3 of section 2 of chapter V;

[27]4  denotes number 4 by author 27 in Church’s Bibliog-
raphy, J. Symbolic Logie, vol. 1, no. 4;

(II]35 denotes the article beginning or reviewed on page 35 of
vol. II, J. Symbolic Logic.
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Chapter 1
THE LOGIC OF CLASSES

SECTION 1 INFORMAL INTRODUCTION
FUNDAMENTAL THEOREMS

Logic is the science of the valid processes of reasoning. In
mathematical logic we investigate these processes by mathe-
matical methods. In this first chapter we shall study the simplest
branch of this science, the logic of classes.

For the moment we shall not attempt to analyze the concept
of “class.”’ Rather we shall take it as undefined but shall assume
that its intuitive meaning is known. By a class we shall mean any
collestion of things, for example, the class of all men or the class
of red-headed baboons. The members of the class may be ab-
stractions or may be in some other sense not tangible; thus the
class of positive integers and the class of jabberwockies are
perfectly good classes. We shall denote classes by small Greck
letters. .

We shall say that the class « is the same as the class g8 if and
only if they have exactly the same members. Thus the class of
even primes is the same as the class whose only member is the
number 2. We shall denote the relationship “a is the same as 8’
by the symbols “‘a = 8.” The following propositions are evident:

Tl a = «a;
T2 if a = B, then 8 = a;
T3. ifa = Band B = v, thena = 7.

In most statements, if a« = g, then “a’’ may be substituted for

“g” at any point without changing the truth or falsity of the
statement.

1
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We shall symbolize the statement ‘“‘z is a member of o’ by’
“yp e o

If a and B are classes, we shall denote by “a M g’’ the class of
all objects which are members of both a and 8. Similarly, we shall
use “a \UJ B’ for the class of all things which are either in @ or in 8
or in both. Thus if « is the class of females and 8 is the class of
engineers, then a M B is the class of female engineers, and « \U 8
is the class of all objects which are either females or engineers or
both. By o’ we shall mean the class of all objects which are not
in a. The class @ — 8 = a M #’, by definition, so that « — 8 is
the class of all objects which are in a but not in 8. Two special
classes are of importance, the universal class, denoted by “1”,
which is the class containing all things, and the null class, 0,
which is the class which has no members.

These symbols have been introduced so that we may con-
struct an algebra of classes. They enjoy the following properties:

T4 aN B =BN a;

Ts. aN (BN y) = (@M )N\ y;

T6. a\UB =8\ a

T7. a\UBYUYy) = (a@UB Un;

TS. aNa=a\lUa = aq;

T9. aNBUYY) =(@NB)V(@aNy);
TI. a U BNYy)=(@@UBN(aUyw);

Til. aU d = 1;
T12. aNa = 0;
Ti3. aNl=aU0 = a;
Ti4. a U 1 = 1;
T15. a M0 = 0;

T16. (a’)’ = a;

T17.0 = 1;1' =04

Ti8. (U B)Y =o' NE;

T19. («aNB) =o' U F';

T20. a\U (aNB) =aN (a\UB) = a

These propositions are for the most part obvious. Thus T4
says that if zis in a N B, i.e. if z is in both « and 8, then z is in
8N a, and conversely. Lot us check ane of the more compli-
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cated properties, say T10, as an illustration. We must show that
every member of the class on the left-hand side of the equation
is also a member of the class on the right, and conversely. If
r € a\U (8N 7), then either x & a or x € 8 /N v or both. If
x € a, then certainly x & « \U 8 and also z & a \J v. Hence
2 € (a\JB) N (a\J 7). Alternatively,if t € /M v, thenz € 8
and z € v. From the first, z € « \U 8, and from the second,
z € a\Jy. Hence 2 € (a U ) N (a U v). We have thus
shown that if z €E a\J (6N v), thenz € (U B) N (VU 7).
The converse may be shown in a similar manner. In view of T5
and T7, we shall write «a M B8 M v, for (a M B) N v, and
aU B\ vyfor (a\UB) U v, etc.

We say that « is included in B, or that « is a subclass of 8,
(in symbols, @ C B) if every member of « is also a member of 3,
i.e. z € a always implies that x & 8. The following propositions
are easy to prove:

T2l. a = Bifand onlyif « CBand 8 C a;.
T22. a CBifandonlysf aM B = a;

T23. «a CBefand only if a\J B = B;

T24. a CBifand only if a — B = 0;

T25. a CBifandonlyif o' I B = 1;

T26. a C «;

T27. aNBCaC alUg;

T28. 0 C a C 1;

T29. if « C 0, then a = 0;

T30. if 1 C a, thena = 1;

T3l ifa C Band B C v, then a C 7;

T32. f a CBbhenaNyCBNyanda\Jy C B 7,
T33. if a C B, then B’ C o;

T34. ifa CBanda C v,thena C BN 7;
T35. tfa C vyand 8 C v, thena\J 8 C 7.

We have thus shown that if the operations with classes are
symbolized in the above fashion, we obtain an algebra similar
to our ordinary algebra of numbers. The similarity becomes
more striking if we introduce the ‘“exclusive’” either-or. Let
a+ B = (a — B)\J (8 — a), by definition;i.e. « + g is the class
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of all things which are in one of « and 8 but not the other. If for
the moment we abbreviate “a M B” by “aB’, we obtain the
following propositions:

T36. aB = Ba; a(By) = (aB)v;
T37.a+B8=B8+a;a+B+7)=(a+8) +17;
T38. a( + v) = aB + av;

T39. a+0 = a = al;

T40. « + a = 0.

It is unnécessary to go back to the original meanings of the
symbols in order to prove these statements. We can instead use
the properties already stated. Thus

a+7) =aN(BNY)V E N7)
=(@NBNy)Y@ng Ny
= afy' U of'y, A
and af + ay = (NP N (@M 7)) Y ((@aN B’ N (@M 7))

(NN (@YY (" YB)N (aN 7))
(((aNB)yN ) ((@aNB) N YY)
VllaNy) Na) U ((@aNy) N EY)

= aa’B\U afy' U aad’y U o’y .
08\ ey U Oy U af’y

=0U a8y JVOU ofy

= oy’ U af’y.
Here we have used the definition of « 4+ 8, and equations T9,
T4, T5, T19, T12, and T13 above.

By virtue of equations T36 to T40 the algebra of classes is
what mathematicians call a ring with respect to the operations
af and « + B. Indeed, this ring is a very special one because of
T8 and T40, which show that the algebra of this ring is much
simpler than our ordinary algebra since there are no exponents
or coefficients.

By virtue of T21, T22, T23, T26, T27, T31, T34, and T35,
(or alternatively, by T4, T5, T6, T7, T8, and T20) the algebra
of classes is also what mathematicians call a lattice. This is a
very special type of lattice because of T10 to T13.

We shall not use the knowledge already accumulated concern-
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ing rings and lattices in our present work. In more advanced
work, however, these points of view are useful.

The algebra of classes is called Boolean algebra after the'man
(G. Boole, Irish, 1815-1864) who first studied it intensively.

All the formal laws of Boolean algebra can be obtained from
one general principle. We must first define the concept of a
“Boolean function” step by step. If f(a) = v, where v is a con-
stant class, for all «, then f is a Boolean function. If f(a) = «
for all @, then f is a Boolean function, the so-called identity
function. If f is a Boolean function, and if g(a) = (f())’ for all
a, then ¢ is a Boolean function. If f and g are Boolean functions,
and if k() = f(a) Y g(a) and k(a) = fla) N g(a) for all «,
then h and k are Boolean functions. The class of Boolean func-
tions is the smallest class of functions satisfying these condi-
tions, i.e. it is the class of all functions which can be obtained
by starting with ¢onstants and the identity function, and apply-
ing the operations a’, a M 8, and a \U 8 a finite number of times.
Thus f(a) = (v N\ a) U (§ N '), where v and § are constant
classes, is a Boolean function.

The fundamental theorem of Boolean algebra is

TrEOREM 41. If f i3 a Boolean function, then
fle) = (/1) N ) U (f(0) N o)
Proof. If f(a) = «, where ¥ i8 a constant, then

ANV FO) N )= (vyNa)J (v N )

TN (@) . (by T9)
YN 1 (by T11)
(by T14)

[}

v
f(a).
If f(a) = a, then

MNYV O Ny = (1Na)J (0N a)
=alU0 (by T13, T15)
=« (by T13)
= f(a).
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8uppose the theorem is true for f. Let g(a) = (f(a))’ for all a.
Then

(a) = (F() N &) U (f(0) N )’
= (fA) N o) N FO) N Y (by T18)
= (fD) V)N (f(0) U (o)) (by T19)
= (f(1) N0V (F(1)Y N (a))
U (@ N f(0)) U (a N ())
(by T9, applied twice)
= (M) N OV FAY Ne) Y (FJO)Y N &)
(by T16, T12, T13)
= (' NFO) N (@Y a) Y (1) Na)
U (f(0)' N a') (by T11)
= (fOY N 1) Nea) Y (1) N F(0) N &)
U Q)Y Na) Y (F(0)Y Na') (by T4, TS, T9)
= (f(1) N a) Y (f(0) N a) (by T20).

Suppose the theorem is true for f and g, and let
ha) = f(a) U g(a) and k() = f(a) N g(a) for all a. Then

he) = (f(1) N a) U (F(0) N &) U (g(1) N a) U {g(0) N &)
= ((f(D) VY g(1)) N a) Y ((f(0) VY g(0)) N o) (by T9)

Also

k(a) = ((f(1) N a) U (f(0) N a)) N ((g(1) N &)
U (9(0) N o))
=M NgHNaNa V(1) Ng0)NaNa)
Vo NglyNa Na)
M (F(0) N g(0) N o’ N ') (by T9, T4, T5)
= (((FM) N g(1)) N a) U ((F(0) N g(0)) N &)
(by T8, T12, T13, T15)

If f is any Boolean function, then it can be built up in a finite
number of steps from constants and the identity function by
means of the operations o/, « M B8, and « \U 8. Therefore, by
combining these results, we immediately obtain the theorem.

This theorem shows that in order to prove that two Boolean
functions, f and g, are equal for all «, it is sufficient to prove
that 7(0) = g(0) and f(1) = g(1).
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All these considerations can be extended to Boolean functions
of several variables. Thus if f is a Boolean function of two
variables, then

f(a, 8) = (f(1, DaB) U (£(1, 0)af’) U (£(0, 1)a’B)
Y (J(0, 0)a’s’).

As a coroliary we obtain
fl@\V B\ flaN B) = f(e) Y f(B),

if f is any Boolean function. For let g(e, 8) = fla \J 8) U
Jla 1\ B), Ma, B) = fla) \J f(B). Then g(1, 1) = Kh(1, 1),
g(1,0) = h(1, 0), etc. Therefore, g(e, 8) = h(a, ) for all « and g.

EXERCISBES

Ex. 1. Verify T4-T40.
Ex. 2. (a). Prove T8 from T27, T34, and T21.

(b). Prove T11 from T26 and T25.

(c). Prove that a” C « from T11, T6, and T25.

(d). Prove T35 from T34, T33, T18, and T186.

Ex. 3. Show that if f is any Boolean function of one variable,
then

®). fl@) = (F) Y a) N (F(0) V a).

). 1G©0) = FO N f(1) C f(a) croO)vsQa) =

. JUQ)).

©). f(a) = v + 8a, where ¥ a.nd $ are constants.

@. X f0) N f(1) C 9 C f(0) U f(1), then the
equation f(a) = n has a solution. Find all solu-
tions.

(e). If the equation f(§) = # has a unique solut':on for
one value of 7, then it has a unique solution,
namely f(»), for all values of ».

(0. If f(&) C f(&) whenever a C & C & C8, then
BN f(0) C a\J f(1), and conversely.

®. U & C g, then f(f(§) C fU())- :

(). If « C 8 and f(a) C f(8), then f(8) C f(&)
whenevera C ¢ C & C 8.



