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GENERAL INTRODUCTION

In May of 1973 we organized an international research colloquium on
foundations of probability, statistics, and statistical theories of science
at the University of Western Ontario.

During the past four decades there have been striking formal advances
in our understanding of logic, semantics and algebraic structure in
probabilistic and statistical theories. These advances, which include the
development of the relations between semantics and metamathematics,
between logics and algebras and the algebraic-geometrical foundations
of statistical theories (especially in the sciences), have led to striking new
insights into the formal and conceptual structure of probability and
statistical theory and their scientific applications in the form of scientific
theory.

The foundations of statistics are in a state of profound conflict.
Fisher’s objections to some aspects of Neyman-Pearson statistics have
long been well known. More recently the emergence of Bayesian statistics
as a radical alternative to standard views has made the conflict especially
acute. In recent years the response of many practising statisticians to the
conflict has been an eclectic approach to statistical inference. Many
good statisticians have developed a kind of wisdom which enables them
to know which problems are most appropriately handled by each of the
methods available. The search for principles which would explain why
each of the methods works where it does and fails where it does offers a
fruitful approach to the controversy over foundations. The colloquium
first aimed both at a conceptually exciting clarification and enrichment of
our notion of a probability theory and at removing the cloud hanging
over many of the central methods of statistical testing now in constant
use within the social and natural sciences.

The second aim of the colloquium was that of exploiting the same
formal developments in the structure of probability and statistical theories
for an understanding of what it is to have a statistical theory of nature,
or of a sentient population. A previous colloquium in this series has
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already examined thoroughly the recent development of the analysis of
quantum mechanics in terms of its logico-algebraic structure and brought
out many of the sharp and powerful insights into the basic physical
significance of this theory which that formal approach provides. It was
our aim in this colloquium to extend the scope of that inquiry yet further
afield in an effort to understand, not just one particular idiosyncratic
theory, but what it is in general we are doing when we lay down a formal
statistical theory of a system (be it physical or social).

Our aim was to provide a workshop context in which the papers pre-
sented could benefit from the informed criticism of conference partici-
pants. Most of the papers that appear here have been considerably
rewritten since their original presentation. We have also included com-
ments by other participants and replies wherever possible. One of the
main reasons we have taken so long to get these proceedings to press has
been the time required to obtain final versions of comments and replies.
We feel that the result has been worth the wait.

When the revised papers came in there was too much material to
include in a single volume or even in two volumes. We have, therefore,
broken the proceedings down into three volumes. Three basic problem
areas emerged in the course of the conference and our three volumes
correspond. Volume I deals with problems in the foundations of prob-
ability theory; Volume II is devoted to foundations of statistical in-
ference, and Volume III is devoted to statistical theories in the physical
sciences. There is considerable overlap in these areas so that in some
cases a paper in one volume might just as well have gone into another.



INTRODUCTION TO VOLUME III

One of the major influences on recent developments in foundations
research in probability theory has been the striking role of probability
theory in twentieth century scientific theories. Relativity theory aside,
twentieth century theoretical physics research has been dominated by the
exploration of statistical mechanics and quantum theory, and by the
search for an understanding of the relation between them. Quantum
theoretic use of probability theory has raised increasingly profound
questions about the mathematical and physical conception of probability.
The papers in this volume are almost entirely devoted to the exploration
of these issues — but with a significant twist: most of them belong to an
emerging tradition of foundations research in physics, of great power and
potential, which takes a highly abstract approach to physical theory.
Concerning this tradition one of us (CAH) wrote, in the introduction of
a related work [2}, as follows:

The twentieth century has witnessed a striking transformation in the understanding of
the theories of mathematical physics. There has emerged clearly the idea that physical
theories are significantly characterized by their abstract mathematical structure. This
is in opposition to the traditional opinion that one should look to the specific applica-
tions of a theory in order to understand it. One might with reason now espouse the
view that to understand the deeper character of a theory one must know its abstract
structure and understand the significance of that structure, while to understand how a
theory might be modified in light of its experimental inadequacies one must be inti-
mately acquainted with how it is applied.

Quantum theory itself has gone through a development this century which illustrates
strikingly the shifting perspective. From a collection of intuitive physical maneuvers
under Bohr, through a formative stage in which the mathematical framework was
bifurcated (between Schridinger and Heisenberg) to an elegant culmination in von
Neumann’s Hilbert space formulation the elementary theory moved, flanked even at
the later stage by the ill-understood formalisms for the relativistic version and for the
field-theoretic alternative; after that we have a gradual, but constant, elaboration of all
these quantal theories as abstract mathematical structures (their point of departure
being von Neumann’s formalism) until at the present time theoretical work is heavily
preoccupied with the manipulation of purely abstract structures.

The papers by Bub, Demopoulos, Finch, Finkelstein, Gudder, Mittel-
staedt and Randall and Foulis all belong, in their several distinct ways,
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to this tradition. (If the reader will consult their other publications, in the
light of {1} and [2], he will discern an interlocking pattern of devel-
opment in this abstract approach to physical theory.) There is emerging
from this work a new and deeper understanding of the role of probability
structures in theoretical physics.

The papers by Chernoff and Marsden and by Tisza, too, belong to an
abstract structural approach, though not of a purely or strongly logico-
algebraic sort. Bunge offers a clarification of the logico-semantic frame-
work for probability in physics (cf. Tisza). Lubkin remarks on interesting
applications of a generalized quantum approach to other subject matters.

W. L. HARPER and C. A. HOOKER
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JEFFREY BUB

THE STATISTICS OF
NON-BOOLEAN EVENT STRUCTURES

&

Quantum mechanics incorporates an algorithm for assigning probabilities
to ranges of values of the physical magnitudes of a mechanical system:

pw (aeS) =Tr (WP 4(S))

where W represents a statistical state, and P ,(S') is the projection operator
onto the subspace in the Hilbert space of the system associated with the
range S of the magnitude 4. (I denote values of A by a.) The statistical
states (represented by the statistical operators in Hilbert space) generate
all possible (generalized) probability measures on the partial Boolean
algebra of subspaces of the Hilbert space.' Joint probabilities

Py (a,eS 1 &a,e8,&... &a,eS,) =
=Tr(WP4,(S1) Py, (S2) ... Pa, (S4)

are defined only for compatible > magnitudes A;, 4,,... 4,, and there are
no dispersion-free statistical states.

The problem of hidden variables concerns the possibility of represent-
ing the statistical states of a quantum mechanical system by measures on
a classical probability space, in such a way that the algebraic structure of
the magnitudes is preserved.? This is the problem of imbedding the partial
algebra of magnitudes in a commutative algebra or, equivalently, the prob-
lem of imbedding the partial Boolean algebra of idempotent magnitudes
(properties, propositions) in a Boolean algebra. The imbedding turns out
to be impossible; there are no 2-valued homomorphisms on the partial
Boolean algebra of idempotents of a quantum mechanical system, except
in the case of a system associated with a 2-dimensional Hilbert space.*

Thus, the transition from classical to quantum mechanics involves the
generalization of the Boolean propositional or event structures of classical
mechanics ° to a particular class of non-Boolean structures. This may be
understood as a generalization of the classical notion of validity: the class
of models over which validity is defined is extended to include partial
Boolean algebras which are not imbeddable in Boolean algebras.®

Harper and Hooker (eds.), Foundations of Probability Theory, Statistical Inference, and Statistical Theories
of Science, Vol. III, 1-16. All Rights Reserved.
Copyright © 1976 by D. Reidel Publishing Company Dordrecht-Holland.
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In a Boolean algebra %, there is a 1-1 correspondence between atoms,
ultrafilters, and 2-valued homomorphisms, essentially because an ultra-
filter @ in % contains a or a’, but not both, for every ae#.7 In a partial

oolean algebra 7 that is not imbeddable in a Boolean algebra, this corre-
&ondence no longer holds. The partial Boolean algebra may be regarded
as a partially ordered system, so the notion of a filter (and hence an ultra-
filter as a maximal filter) is still well-defined. But it is no longer the case
that if @ is an ultrafilter, then for each ac/ either ae® or a'eP, and
hence ultrafilters do not define 2-valued homomorphisms on /.8 An
atom in & will correspond to an ultrafilter but not to a prime filter, and
hence will not define a 2-valued homomorphism on .

A measure on a classical probability space (X, &, u) may be inter-
preted as a measure over ultrafilters or atoms in a Boolean algebra %,
the points xe X corresponding to ultrafilters in # and the singleton sub-
sets {x} in & corresponding to atoms in #. (Under the Stone isomorph-
ism,® every element in a Boolean algebra is mapped onto the set of ultra-
filters containing the element.) Thus, the probability of an event a'® may
be understood as the measure of the set of ultrafilters containing a, or the
measure of the set of atomic events that can occur together with theevent a:

p(a)=u(2,)

The conditional probability of a given b, p(a | b), is the measure of the
set of ultrafilters containing a in the set of ultrafilters containing b, with
respect to a renormalized measure assigning probability 1 to the set @,:

1(ds 0 9s) _p(a A D)
1(ds) p(d)

Loosely: We ‘count’ the number of atomic events that can occur together
with the event b, in the set of atomic events that can occur together with
the event a. (Notice that if b is an atom, the conditional probability is a
2-valued measure.)

The statistical states of quantum mechanics define probability measures
in the classical sense on each maximal Boolean subalgebra of the partial
Boolean algebra of propositions of a quantum mechanical system. Con-
sider a system associated with a 3-dimensional Hilbert space 5. Let 4
and B be two incompatible (non-degenerate)'! magnitudes with eigen-
values a,, a;, a3 and by, b,, bs, respectively. The corresponding eigen-

p(a|b)=
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vectors are ay, o, 3 and B, B,, B;. I shall also denote the atoms (atomic
propositions or events) in the maximal Boolean subalgebras #, and %y
of &7; by a; and b, i.e. I shall use the same symbols to denote properties
of the systems represented by these values of the magnitudes.

The statistical state with the vector o; assigns probabilities

pal (al) = 1’ Pa, (02) = 03 pa; (03) = 0

to the atomic propositions in % ,, and probabilities

Pqy (b1) = l(Bs> “1)|2s P, (02) = (B2, “1)|2,
Do,y (b3) = |(B3v al)|2

to the atomic propositions in % 5. How are these probabilities to be under-
stood? The problem at issue is this: Suppose a system S has the property
a,. The statistical algorithm of quantum mechanics assigns non-zero
probabilities to properties incompatible with a,, for example p, (b;)=
=|(B;, @,)}>. Now, the probability assigned to b, by the statistical state
P., (the projection operator onto the 1-dimensional subspace spanned by
the vector a,) cannot be interpreted as the relative measure of the set of
ultrafilters containing b, in the set of ultrafilters containing a; because,
firstly, @, and b, are atoms in &5 and, secondly, a, and b, cannot be rep-
resented as non-atomic properties in a Boolean algebra because no
Boolean imbedding of &/ is possible. Thus, since there are no 2-valued
homomorphisms on 73, the probability p,,(b,) cannot be interpreted as
the conditional probability, p(b; | a,), that the proposition b, is true (or
the corresponding event obtains) given that the proposition a is true, i.e.
the probability that the value of the magnitude B is b, given that the value
of the magnitude A is a;. What do these probabilities mean?

Usually, the problem of interpreting the quantum statistics is posed
rather differently. It is pointed out that the statistics defined by p,,, for
the magnitude B cannot be understood in terms of a statistical ensemble
constituted of systems in quantum states'? B, B,, B, with weights
1By, )12, 1(B2s ¢1)1%, 1(B3, ¢4)i%. Such an ensemble is represented by the
statistical operator

3
W= 'Zl wb “1)‘2 Pﬁt

which yields the same statistics as P,, only for magnitudes compatible
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with B. Thus, the problem of interpreting the quantum statistical rela-
tions between incompatible magnitudes is presented as the problem of
making sense of the statistics of pure ensembles, insofar as these ensembles
are not reducible to mixtures: probability distributions of systems in quan-
tum states represented by Hilbert space vectors.

Those interpretations which follow the Copenhagen interpretation of
Bohr and Heisenberg propose that a (micro-) system, at any one time, is
characterized by a set of properties which form a Boolean algebra — a
maximal Boolean subalgebra in the partial Boolean algebra of quantum
mechanical properties.!®* The appropriate Boolean subalgebra is related
to the experimental conditions defined by macroscopic measuring instru-
ments. In effect, this amounts to saying that a system is always represented
by some mixture of quantum states (in the limiting case, by a mixture with
0, 1 weights), the constituents of the mixture being determined by the ex-
perimental conditions. If the experimental conditions are such as to
determine the maximal Boolean subalgebra &, associated with the (non-
degenerate) magnitude 4, then the system is actually in one of the states
a,, d,, &3, and hence represented by a statistical operator of the form

3

Y wP,.

i=1
If the state is known, w;=1 or 0. The probabilities assigned to the ‘com-
plementary’ propositions in % by a pure statistical operator P, rep-
resenting a statistical ensemble of systems all in the state «;, are to be
understood as the probabilities of finding particular B-values, if the
experimental conditions are altered so as to determine the maximal Boo-
lean subalgebra #p, given that the system is in the state o;. The quantum
mechanical description of a physical system, in terms of a partial Boolean
algebra of properties, allows the consideration of all possible experimental
conditions, but the application of this description to a particular system
is always with respect to the experimental conditions obtaining for the
system, which specify a particular maximal Boolean subalgebra of prop-
erties.

The Copenhagen interpretation leads to an insoluble measurement
problem, if the experimental conditions for a system SM are assumed to
be determined (in principle, at least) by a physical interaction between
S and a second system S ® (which, even if macroscopic, ought to be
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reducible to a complex of interacting microsystems).'* Suppose that a
particular maximal Boolean subalgebra #,(,,'3 is selected for S* by an
interaction with $(® governed by the quantum mechanical equation of
motion. Suppose, further, that S® is a measuring instrument suitable for
measuring the S®)-magnitude 4", so that correlations are established
during the interaction between the possible values of 4" and the possible
values of an S®-magnitude 4‘® (in the sense that the probability as-
signed by the statistical operator of the composite system S® +5® to
the pair of values a{", a'® (i #j) is zero). If the initial quantum state of
S® js represented by the vector

¥=3 (@ 9) e,
i

what is apparently required is an interaction which results in the represen-
tation

W= z W,-P,,(n ®a(2)
i

with w;=|(a{", ¥)|?, for the statistical state of the composite system
SMW 4 52 16 Gince the statistics defined by W for S is given by the
operator!’

WO =Y wPw,
i

the quantum state of the system S may be regarded as belonging to the
set a{t, a§?, a§, and the probabilities w; as a measure of our ignorance
of the actual state.

Now, of course, there can be no quantum mechanical interaction which

results in the transition
P W - W

where Py is the statistical operator of the initial pure ensemble of com-
posite systems all in the quantum state ¥,.'® For the evolution of a quan-
tum mechanical system is governed by Schridinger’s equation of motion,
represented by a unitary transformation of the Hilbert space vector de-
fining the quantum state of the system, and the transition Py, W, from
the pure ensemble represented by Py, to the mixture represented by W,
is non-unitary.

Attempted solutions to this problem exploit the similarity between W
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and the statistical operator Py, with
V=5 G0 9) o @afd.
i

The transition Py, — Py is unitary, and the statistics defined by Py for
S® is also given by the operator

WU) = Z wiPm(‘) .
i

But W may be taken as representing a statistical ensemble of systems in
quantum states «{"®a{> with weights w;, which is manifestly different
from the pure ensemble represented by Py and constituted of systems
each in the state ¥. In fact, Py and W define the same statistics for S™®-
magnitudes, S ®)-magnitudes, and for S+ S ®-magnitudes compatible
with the magnitude 4+ 4@ (whose eigenvectors are «{’®a«{?), but
differ for general S+ S ®-magnitudes.!®

Actually, these considerations, which are usually laboured in discus-
sions on the measurement problem, are largely irrelevant. The objections
to the transition Py, — Py as a process which selects a maximal Boolean
subalgebra of propositions for the measured system S ) apply with equal
force to the transition Py, —» W. Clearly, Py does not yield a representa-
tion for W) as a unique mixture of orthogonal pure states, represented
by the eigenvectors of the magnitude measured. For we may have

¥ =3 (@, 9) off @af?
i
=3 (B0 ® 8P, ¥) BV ® B
J

where B§%, B? (j=1, 2, 3) are the eigenvectors of magnitudes B, B®
incompatible with 4™, 4®), respectively, so that the statistics defined
by Py for S™ is given by the operator

W(l) = z WiPai(l) = Z W}Pﬂj(l)
i J

with w;= [(«V, ¥)I2, wi=1(B{" @B, ¥)|?.2° But since the representa-
tion of a statistical operator as a weighted sum of pure statistical operators
is in general not unique,?’ even assuming some physical grounds for
restricting the representation to statistical operators associated with
orthogonal vectors in Hilbert space, the mixture defined by W=



