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PREFACE

This book is intended as a first course on quantum mechanics and its
applications. It is designed to be a first course ither than a complete
one, and it is based on lectures given to m thematics and physics
students in Cambridge. The book should be si table also for engineer-
ing students. ’

The first five chapters deal with basic quan um mechanics, and are
followed by a revision quiz with which the reader may test his
understanding of them. Perhaps the most noticeable omission from
these chapters is a detailed discussion of the mathematics of intrinsic
spin (Pauli matrices, etc.). Our experience is that students initially find
this more difficult than the other material, and since it is not needed for
the applications described in the second part of the book, we have
omitted it.

In most courses on quantum mechanics, the first application is to
scattering problems. While recognising the importance of scattering
theory, we have chosen rather to describe the application of quantum
mechanics to physical phenomena that are of more everyday interest.
These include molecular bmdmg, the physics of masers and lasers,
simple properties of crystalline solids arising from their electronic
band structure, and the operation of junction transistors.

A few problems-are included at the end of each chapter. We urge the
student to work through all of these, as they form an integral part of
the course. Some hints on their solution may be found at the end
of the book. -

We express our thanks to Sandra Evans, who typed the manuscript,
and to David Branson, Ian Drummond, Sir James Lighthill, Michael

- Pepper and Ian Smith, who have very kindly read various parts of it

and made valuable suggestions. ,
Christ’s College, Cambridge Peter L(andshoﬂ’
May 1978 ~ , Allen Metherell



CONSTANTS OF QUANTUM PHYSICS

viii

Dirac’s constant h=h/27=1.05x10">Js
Charge of electron —e=-1.60x10""°C
P"ine-structure.constant e*/4meohc =1/137
Speed of light ¢=3.00x10°ms™"

Mass of electron m.=9.11x107> kg

Mass of proton m,=1.67x10"2" kg
Electronvolt 1eV=1.60x10""°]
Boltzmann’s constant kg=1.38x10"2JK™!
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Preliminaries

. Atoms

An atom consists of a positively charged nucleus, together with a

number of negatively charged electrons. Inside the nucleus there are
protons, each of which carries positive charge e, and neutrons, which
have no charge. So the charge'on the nucleus is Ze, where Z, the atomic
number, is the number of protons. The charge on each electron is —e,
so that when the atom has Z electrons it is electrically neutral. If some
of the electrons are stripped off, the atom then has net positive charge;
it has been ionised. o ‘

The electrons are held in the atom by the electrostatic attraction
between_each electron and the nucleus. There is also an attraction
because of the gravitational force, but this is about 107*° times less
strong, and so may be neglected. The protons and neutrons are held
together in the nucleus by a different type of force, the nuclear force.
The nuclear force is much stronger than the electrical force, and its
attraction more than counteracts the electrostatic repulsion between
pairs of protons. The nuclear force does not affect electrons. It is a very
short-range force, so that it keeps the neutrons and—protons very close
together; the diameter of a nucleus is of the order of 107"* m. By
contrast, the diameter of the whole atom is-about 107'° m, so that for
many purposes one can think of the nucleus as a point charge. The
mass of the proton or neutron is some 2000 times that of the electron,
so nearly all the mass of the atom is in the nucleus.

It is natural to think of the electrons as being in orbit round the
nucleus, figure 1.1, just as the planets are in orbit round the sun. The
electrostatic force that keeps the electrons in their orbits is an inverse-
square-law force, just as is the gravitational force that keeps the
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planets in orbit, so that the two systems would seem to obey precisely
similar equations. However, there is a serious difficulty. When a
particle moves in a curved orbit. its :velocity vector is continuously
changing: the particle is being accelerated towards the centre of its
orbit. According to classical electrodynamics, when a charged particie
is accelerated it inevitably radiates energy (this is the basic principle of
radio transmission). So according to classical physics the electron
would continuously lose energy and its orbit would form a spiral which
would gradually collapse into the nucleus.

The reason that this does not happen is that very small systems, such
as atoms, do not obey classical mechanics. To describe an atom one has
to use quantum mechanics. In quantum mechanics, as opposed to
classical mechanics, one cannot arbitrarily choose a value for the
energy of the orbiting particle and then find an orbit corresponding to
that energy; only certain discrete values of the energy are allowed.
When the electron is in its lowest allowed energy level, it cannot
radiate any more energy, and so the total collapse of the atom is not
possible.

One can also use quantum mechanics to describe the solar systent.
Just as for the electrons, the allowed energy levels of the planets are
discrete. If a planet in orbit is given an impulse, its energy is allowed to
change only to that of one of the other allowed discrete levels.
However, the separation between these levels is so small that this is not
a very real restriction, and classical mechanics is perfectly adequate to
describe the system. The effects of quantum mechanics are generally
only important for submicroscopic systems.

The chemistry of an atom.is determined by the charge onits nucleus.
Thus atoms whose nuclei differ only in the number of neutrons that

“Figure 1.1. Classical picture of negatively charged electrons in orbit round the
positively charged nucleus of an atom.

~€



Photons » 3

they contain have similar éhemical properties; they are said to be
isotopes of the same element. For example, the atom of the common
form of hydrogen contains just a single proton, that is, Z = 1; but
hydrogen has a stable isotope, called deuterium, whose nucleus con-
sists of one proton and one neutron. Atoms can be bound together
to form molecules (see chapter 6), and different isotopes of the same
element do this in the same way. Ordinary water consists of molecules
containing two hydrogen nuclei and one oxygen nucleus, H,O, while
‘heavy’ water has deuterium nuclei instead of the ordinary hydrogen,:
. D,0. The chemical properties of heavy water are exactly the same
as those of ordinary water, but there are some differences in its
physical properties. In particular, it is denser because of the extra
neutrons. '

Photons

In a metal, the atoms are effectively anchored to fixed sites by the
electrostatic forces due to all the other atoms. The outermost orbital
electrons of the atoms are almost free, and move through the metal
“when an electric field is applied. (See chapter 11.) If the metal is
bombarded with light, some of the electrons can actually escape from
the surface of the metal and can be detected as an electric current. This
. is the photoelectric effect. The number of electrons that escape in a given
time rises with the intensity of the beam of light, but the energy with
which they escape does not depend on the beam intensity. Rather it
. depends on the colour or freq’uen,cy v of the light. The kineticenergy T
with which the electrons escape is found to obey the equation

hv=T+W. ‘ (1.1)
Here h is Pianck’s constant,
- h=6.626x10"*1s,

and W is the energy that must be given to the electron to enable it to
overcome the electrostatic attraction of the metal. (The value of W'
varies, according to the state within the metal from which the electron
is ejected. For a given metal, there.is a definite minimum value W,
. called the work functzon of the metal.)

These results are explained by the hypothesxs that a beam of llght
‘can be thought of as a collection of particles, ‘called photons. The



4 Preliminaries

number of photons is prpportibnal to the intensity of the light, and the
energy E of each photon'is proportional to the frequency,
"E=hwv. (1.2)

The electron is ejected ‘from the metal when one of the photons
collides with it and is absorbed by it, so giving up all its energy to the -
electron. The number of electrons ejected rises as the intensity of the
light is increased because there are then more incident photons, and so
there is a greater chance of a photon being absorbed.

Photons move with the speed of light, so their kinematics must be
described by the laws of special relativity. The energy of a particle
whose speed-is v and whose rest mass-is in is

E=mc*/(1-v*/c?)'?, " (1.3a)
so that when v =c¢ the energy can be finite only if m =0; that is,

photons have zero mass. In terms of the momentum p of the particle,
(1.3a) reads

E =c(m?*c?+pH)"?, (1.3b)
so that for a photon ' :
E=cp. (1.4)

If a beam of light is shone normally on a perfect conductor it is
reflected, that is, the momentum of each photon is reversed. This must
occur by some sort of force being exerted on the photons, and the
conductor must experience an equal and opposite force. This is a
realisation of the classical idea of radiation pressure. » ,
The'equations (1.2) and (1.4) are tested in the Compton effect. When
‘photons collide with free electrons or protons, not bound into a-solid,
they cannot be-absorbed because it can be shown (see problem 1.2)
that this would violate conservation of energy and momentum. (In the
photoelectric effect some of the energy, W, is absorbed by the other
particles in the metal). However, a free particle can scatter the photon,
so changing its energy and therefore its frequency; at the same time the
particle recoils. The kinematics of the process can be worked out using
(1.2), (1.4) and the relativistic energy-momentum conservation laws
(see problem 1.4), and the results are found to agree with experiment.
The .equation (1.2) also helps to explain atomic spectra. We have '
said that, according to the results of quantum mechanics, the allowed
energy levels of the electrons in atoms are discrete. If a beam of light is
shone on a collection of atoms, the photons can be absorbed by the
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atoms if, and only if, their energy is equal to the difference between the
energies of two electron levels. The absorption of the photon then
excites the atom, sending the electron from the lower to the higher
level. (The number of photons that can be absorbed in this way of
course depends on how many atoms happen to be in the lower of the
two states to start with.) Thus only photons with certain discrete
frequencies are absorbed. Conversely, an atom in an excited state can-
decay by emitting a photon; the frequency of the photon depends on
the difference between the initial and final energies:

hV=Ez"E1.

- The energy levels of an atom (or molecule) depend on what element it

is, so that the spectrum.of frequencies absorbed and emitted provides a
useful way of identifying substances. :

Wave nature of matter

Although light can be thought of as a collection of photons, it also has
wave-iike properties. For example, a coherent beam of light is
diffracted when it is shone through a pair of closely separated slits: if a
screen is placed at large distance behind the slits, a pattern of light and
dark fringes appears on it. The spacing of these fringes is calculated
from the wavelength A of the light. See figure 1.2. Dark fringes appear
at points on the screen such that their distances from the two slits differ
by (n +3)A, where n is an integer. Then the light received from the two
slits is exactly out of phase; the two components cancel. ‘
So quantum mechanics gives light a dual nature. In some respects it
behaves like a collection of particles, in others like a wave. The same is

Figure 1.2. The double-slit experiment. There is darkness at points on the
screen such that the path difference between rays that pass through the two
slits is (n +2)A.
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true for electrons and other particles; quantum mechanics associates
waves with every kind of particle.

The necessity for this is illustrated by the phenomenon of electron
diffraction. If a beam of electrons is passed through a crystal, it
is diffracted. If a fluorescent screen is set up behind the crystal, a
diffraction pattern appears on the screen. The regularly spaced atoms
in the crystal cause the diffraction. The pattern can be explained by
associating with the electrons a wave of wavelength A, which changes
with the momentum of the electrons according to de Broglie’s relation

A=h/p. (1.5)

The waves may be assigned a characteristic frequency », which may
be chosen so as to be related to the electron energy E by the relation
E = hv asfor phbtons (see (1.2)). However, in the case of electrons, the
frequency v is not directly measurable and there is some arbitrariness

“in its definition; for example, E may or may not include the rest-mass
energy of the electron. The part played in the theory by the electron
frequency will become apparent in the next chapter.

The de Broglie relation (1.5) applies also to photons. This follows if

-we make the assumption that the quantum-mechanical waves that

describe photons have the same frequency v and wavelength A as the
corresponding classical electromagnetic waves. Because the classical
waves have speed c, this implies that

Av=c (1.6)

and combining this relation with (1.2) and (1.4) gives (1.5).

Classical electromagnetic waves are associated with a very large
number of photons (see problem 1.1). The waves of quantum
mechanics may describe either a collection of particies or a single
particle. Itis important to understand that quantum-mechanical waves
are more abstract than classical waves. Consider an experiment where
light is diffracted through a pair of slits, or where electrons are
diffracted through a crystal. Suppose that only one photon or electron
is allowed to come into the experiment. In this case we cannot predict
with certainty what will be the angle 6 through which the photon or
electron is diffracted. But if the experiment is repeated many times, we
find a probability distribution for the angle 6 that has the same shape as
the variation of intensity with 6 in an experiment where there is a
continuous beam of photons or electrons. :
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This suggests that the association of a quantum-mechanical wave
with a photon, or with any other kind of particle, is somehow statistical.
We explore this in the following chapters. As will become clear,
according to quantum theory one can never predict with certainty what
will be the result of a particular experiment: the best that can be done is
to calculate the probability that the experiment will have a given result,
or one can calculate the average value of an observable quantity if the
experiment that measures it is repeated many times.

1.1

1.2

1.3

1.4

Problems

A radio transmitter operates on a wavelength of 100 m at a power of
1 kW. How many photons does it emit per second?

Using energy-momentum conservation, show that an electron that is
not in a bound state cannot absorb a photon. ,

A particle has mass 1 kg. How long does it take to move through a
distance of 1 mif its de Broglie wavelength, (1.5), is comparable with the
wavelength of visible light? What is the corresponding answer if the
particle is an electron?

A photon of momentum p, and therefore of wavelength A/p, scatters on

- an electron that is initially at rest. Using relativistic kinematics, deduce

1.5

from the conservation of energy and momentum that as the result of the
scattering the wavelength of the photon changes by (h/mc)(1 —cos 8),
where 4 is the angle through which it scatters and m is its rest mass. (This
scattering process is known as Compton scattering, and the quantity
h/mc is the Compton wavelength of the electron.)

Associated with the electron there is an antiparticle, the positron, which
has equal mass and equal, but opposite, charge.

A positron impinges on an electron which is at rest. They annihilate
into two photons. Show that the sum of the wavelengths of the two
photons is Ao(1 ~cos 8), where 8 is the angle between their directions of
motion and A, is the Compton wavelength of the electron.
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The Schrodinger equation

The basic equation of quantum mechanics is known as the Schrodinger
equation. It is not possible to prove that the equation must be true, just
as we cannot prove that Newton’s laws, the basis of classical
mechanics, must be true. All that can be done is to work out the
consequences of the equation in different physical contexts, and to
compare them as exhaustively as possible with experiment. In this
chapter we begin by showing how the experimental facts that we have
already described make the truth of the equation plausible.

The Schrodinger equation describes non-relativistic particles,
whose energy E and momentum p are related by

E=p’/2m. (2.1

Non-relativistic kinematics can be used so long as the energy E is not
comparable with, or larger than, the rest-mass energy mc>. Relativistic
quantum mechanics is much more difficult than the non-relativistic

- theory, and will not concern us in this book. In particular, we shall not
describe the quantum mechanics of the photon; for this particle m =0,
and so relativistic mechanics must always be used.

Wave functions and operators

We explained in chapter 1 that with a particle of energy E and
momentum p we somehow associate a wave of frequency v = E/h and
wavelength A = h/p. Instead of using » and A, it is convenient to
introduce the angular frequency

w =27
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and the wave vector k, whose direction is in the direction of wave
propagation and whose magnitude is

k=2m/A.
We also work with
h=h/2n
(pronounced ‘h-cross’) instead of h. Then we have
p=hk 2.2)
E = ho.

~ Fora free particle, which is not interacting with any other particle or
with a potential, p and E are constant. Hence we expect such a particle
to be described by a wave for which k and w are constant:

W(r, £)= N e"* ", (2.3)

Here r denotes the position vector and N is a constant. In many
physical applications, we write a wave in the form of a complex
exponential, as is done here, and understand that only the real part is
physically meaningful. In quantum mechanics, however, it will turn out
that both the real and the imaginary parts of ¥ are needed. The plane

-wave (2.3) is the simplest example of a wave function: it describes a
free particle. Instead of (2.3), we could use N e ~itker=w0. the choice of
sign is a matter of convention.

In order to guess how to arrive at wave functions that describe
particles that are not free, we perform a simple manipulation on (2.3).
Differentiation with respect‘to a component x; (j=1, 2 or 3) of r
simply muitiplies ¥ by i times the correspondmg component k; of k.
So, with (2.2), we have -

(-iha/ox))¥=p¥ (j=1,2,3) 2.4a)
or, in more concise vector notaﬁon, ’ "
(—iAVYV =pV¥. . (2.4b)

The equation (2.4a) says that if we apply the differential operator
—ih 8/9x; to W, the result is to multiply ¥ by the number p;. We say that
¥ is an eigenfunction of the operator (—if 3/dx;) with eigenvalue p;.
(More properly, since the differential equations (2.4) do not determine

¥ until we have imposed suitable boundary and continuity conditions
on ¥, we should at this stage specify these conditions. However, we
defer th. discussion of this until the end of this chapter.) In this way, an
experimentally observable quantity, the momentum p of a particle, is
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associated with a differential operator —~iAV. We generalise this to
other experimentally observable quantities by introducing three basic
assumptions:

(a) States of a system are described by wave functions V.

(b) Observable quantities are associated with operators.

(c) When the value of an observable Q is known to be g, the system is
in a state whose wave function is an.eigenfunction of the operator
Q corresponding to Q, with eigenvalue q. That is,

Q¥ =qV¥. (2.5)

We shall elaborate on these assumptions in chapter 4.

Consider the particular example of the observable that is the energy
of a particle. If it is a free particle, this is just p>/2m. So one would-
expect the corresponding differential operator to be obtained by
replacing p in this expression by its corresponding operator —i#V, and
so we have (—=ihV)%/2m, that is, —1°V2/2m. If the particle moves in a
potential V(r), this operator becomest

H=(=h*/2m)V+ V(r) 2.6)

corresponding to the classical expression p>/2m + V(r). H is called
the Hamiltonian operator. To find the possible energy levels E of the
particle, we must find the eigenvalues E of H, that is, we must solve the
equation

HY=EV¥ (2.7a)
(subject to appropriate boundary conditions). This equation
[(—#%/2m)V2+ V(R J¥(r, 1) = E¥(r, 1) (2.7b)

is the time-independent Schrodinger equation.

Notice that if the particle is not a free particle, so that V #0, the
plane wave (2.3) is not a solution of the Schrédinger equation; the
wave function ¥ will be more complicated.

The timz-independent Schrodinger €quation applies when the
particle is in a state such that its energy takes a definite value E. In a
general situation this may not be the case, for example when V
depends explicitly .on the time ¢ as well as on the position r of the
particle. In order to guess what is the generalisation of the Schrédinger

t Although H is an operator, we shall follow the usual convention and not write
the operator symbol over it.



