Designing Screen Interfaces
inC

James L. Pinson

Network Specialist
University Computing and Network Services
University of Georgia

m

YOURIDN PRESS
Prentice Hall Building
Englewood Cliffs, New Jersey 07632

Library of Congress Catraloging-in—Pubticetion Dose

Pinson, James L.
Desipning scresn interfaces in C / Jsmes Pinsan.
p. ce. -- (Yourdon Press cosputing series)
Includes bibliographical references snd index.)
ISBN 0-13-201883-8 . L, il
7. C (Computer progras language) 2. Computer ‘intprfgees.’ .

v

3. Information display systems. I. Titte. II.‘"S&H&{"hngQ i,
QA78.73.C16P883 1991 Y S
008.268~~dc20

Editorial/production supervision

and interior design: Harriet Tellem
Cover design: Lundgren Graphics
Manufacturing buyers: Kelly Behr/Susan Brunke

= © 1991 by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

.

CompuServe is a registered trademark of CompuServe Information ?&Trviccs, Inc.; DESQview is a
tradgmark of Quarterdeck Office Systems, dBASE Il is a registered tradémark of Ashton-Tate; dBASE
11l is a registered trademark of Ashton-Tate; IBM is a registered trade magk of the International Busi-
ness Machines Corporation; Lotus 1-2-3 is a registered trademark of Lotus Development Cor-
poration; Microsoft is a registered trademark of the Microsoft Corporatidn; Microsoft QuickC is a
registered trademark of the Microsoft Corporation; Microsoft Windows is‘?a registered trademark of
the Microsoft Corporation; MS-DOS is a registered trademark of the Microso@orporation; PKUNZIP
is a registered trademark of PKWARE Inc,; Turbo C is a registered trademark of Borland International

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing
Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

Al rights reserved. No part of this book may be
reproduced, in any form or by any means,
without per nission in writing from the publisher.

Printed in the United Stales of America
109 87654321
.

ISBN 0-13-201583-8

Prentice-Hall International (UK) Limitd, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hail Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Flall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface

This book is designed to aid C programmers in the creation of functional, intuitive
screen interfaces.

We will cover in depth the construction of a screen and windo Efunction.
library, and use it to build menu systems similar to those found in popilar com-
mercial software packages.

Programs will be presented that will allow you to produgce:

e A window-based screen interface.

e Moving light bar menus (as in Lotus 1-2-3).
- » Multilevel light bar menus.

¢ Pop-up menus.

¢ Dialogue boxes.

¢ Pull-down menus.

o Field editors.

¢ Data input screens.

o List selection windows.

e Directory functions (for file selection).

¢ Context-specific help screens,

¢ Help screen editors.

il

xlv ¢ Preface

In the process of building these systems, we cover concepts and techniques
for:

® Performing BIOS interrupts.

¢ High-speed direct writing to the screen buffer.

o Avoiding snow on CGA. displays.

» Producing “‘instant’’ screen updates with virtual screens.

® Virtual window creation and manipulation.

» Assuring compatibility with multitasking environments such as DESQview.
o User friendly menu design.

® Data input and verification techniques.

® Obtaining directory information for DOS.

® Help screen creation and display.

GOALS
The purpo_se of this book is to provide the reader with:

1. Programs that can be used as they are, or adapted for the individual pro-

grammer’s needs.
2. The concepts behind each program.

ey 34» Explamations of programming techniques used to build these programs.

Throughout this book we will strive for portability within the MS-DOS/IBM-DOS
world.

For the user of our programs this means that the programs should work right
the first time they are run. The programs require no special drivers such as
ANSIL.SYS, no alteration of config.sys files, and no need to buy special windowing

- operating systems or DOS shells. The software will work: saccessfully with all
popular video cards (CGA, MDA, Hercules, EGA, and VGA). Software based
on this approach will have the widest possible audience, apphcable to virtually
every IBM PC and clone made.

For the programmer, portability means Raving a choice of compilers. We
will avoid using compiler-specific graphic/window libraries. Everything we need
we will build. The code created is memory-model independent; that is, all pro-
grams will compile under all Turbo C and QuickC memory models.

The programs are written entirely in C. No assembler is required. The com-
mented source code may be customized to fit programmers’ needs.

Preface xv

WHAT YOU WILL NEED TO USE THIS BOOK

1. ACcompiler. Borland’s Turbo C compiler was used to produce the examples

in this book. The source code is also totally compatible with Microsoft’s
QuickC.

2. An IBM PC or compatible computer with enough memory to run the com-

piler.

3. IBM- or MS-DOS.

4.

Experience programming with C. Advanced knowledge is not necessary.

WHAT OTHERS WILL NEED TO hUN YOUR SOFTWARE'

1.
2.
3.

An IBM PC or compatible. .
64K of available RAM. More may be needed if your applications are large.
IBM or MS DOS.

THE BOOK LAYOUT

This book is divided into seven chapters.

l.

2.

6.

and the use of pointers and®BIOS interrupts.

The second chapter deals with the creation of a window-based screen func-
tion library. Topics covered in¢lude creating, removing, and writing to win-
dows; creation of a flexible screén writing routine; and screen buffer **pag-
ing” techniques. We also discuss virtual screens and DESQview
compatibility.

The first chapter:is a reﬁeﬁf video adapters, memory layout and access,

. In Chapter 3 we will discuss menu systéms. We will build: Lotus 1-2-3 style

menu bars, multilevel menu bars, pop-u #menus, dialogue boxes, and pull-
down menus. Of particular importance is the section on pop-up menus; here
we establish the data structures, calling conventions, and méniu design phi-
losophies that will be used in all our menus.: .*

Chapter 4 deals with data:entry. We will build'# field editor and will use-it
to construct a dBase style input screen, complete with color-coded fields
and data verification. “

In Chapter 5 we will build a list-select function that -will allow the user to
select from a virtually unlimited number of options, Wing point-and-shoot
and speed search techniques. -

In Chapter 6 we will create a function for selecting files from a directory,
using the list-select function we created earlier.

xvi . . Pretace

7. In Chapter 7 we will build a help screen designer and will show how to add
context-specific help to our programs.

Each major topic is subdivided into four categories:

o Goals: We discuss the general goals and features we wish to implement in
our code. This discussion describes the overall ‘*look and feel’” of the prod-
uct.

o Application: This is the practical part of the book. We discuss the individual
functions and how they would be used within a program. Sample programs
are presented as illustrations. A few tricks for getting the most out of the
functions are described.

e Techniques: Within this section we discuss the design considerations and
techniques used to produce the code. We look at possible programming
approaches, pitfalls, and solutions. We place emphasis on aspects of the
code that would not be intuitively obvious from examining the source code.

¢ Source Code: The code is highly commented. Every effort has been made
to produce readable, useful code and comments. Meaningful variable names
are used when possible (e.g., top=1 instead of t=1),

This modular approach should allow you to concentrate on the aspects of

the book you find most useful. If you are interested in having a set of screen and

~ menu {ools, then you will probably prefer the Applications section. If you are

' interested in finding out how the code works, see the sections on Techniques and
Source Code.

-

OBTAINING SOURCE CODE

Please see Abpendix A for instructions for obtaining the source code from this
book.

ACKNOWLEDGMENTS

I wish to thank Ed Yourdon for encouraging me to start this project. Constuctive
.cxitiques by two anonymous reviewers greatly improved the text, and John Hop-
kins and Steve Spencer helped test the code. I greatly appreciate the efforts of

Paul Becker, Harriet Tellem, Noreen Regina, Robyn Goodale, and all the other

helpful professionals at Prentice Hall.

Special thanks go to my wife Chantal, for all her encouragement, sugges-

tions, editing, and proofreading. This book would never have been written without
her.

Chapter 1

) . -

Contents

Preface ‘ il
ACKNOWLEDGMENTS Xvi

Accessing the Display Adapte: 1

DISPLAY ADAPTERS 1

COMPOSITE DISPLAYS .2

THE VIDEO BUFFER 3

TEXT ATTRIBUTES 4

COL'OR TEXT PAGES 6

VIRTUAL SCREENS 7 |
POI&ITERS AND MEMORY MODELS 8

DIRECTLY ACCESSING THE VIDEO
BUFFER 9

BIOS INTERRUPTS 10

viil

Chiapter 2

PERFORMING AN INTERRUPT 11
THE ANSI CONSOLE DRIVER 14
SUMMARY 15

Window and Screen Functions

GOALS 16

WHAT IS A WINDOW? 17
APPLICATION 17
SPECIFYING A COMPILER 18

FUNCTION PROTOTYPES AND CODING
TECHNIQUES 19

USING THE WINDOW MODULES 20
CREATING A LIBRARY 21
EXTERNAL VARIABLES 21
COMMAND LINE SWITCHES 23
TYPES OF WINDOW FUNCTIONS 24
USING THE FUNCTIONS 34
OPTIMUM WINDOW PLACEMENT 38
MISCELLANEOUS TRICKS 42
TECHNIQUES 43

TYPES OF WINDOWS 44

UPDATING WINDOWS 46

THE SLIDING VIRTUAL WINDOW 47

EXTERNAL PARAMETERS (DATA
STRUCTURES) 47

THE WINDOW STRUCTURE 52
SCREEN WRITING 52

VIRTUAL SCREENS 56

WRITING TO A VIRTUAL WINDOW 56

COMPATIBILITY WITH MULTITASKING
ENVIRONMENTS 58

Contents

16

Contents ix

** CURSOR MANAGEMENT o0
SNOW REMQVAL 61
SNOW AND NONSCREEN OUTPUT 63

MAXIMUM PERFORMANCE DURING
SCREEN UPDATES 63

SUMMARY 64
SOURCE CODE 64
MYDEF.H 64
L_MAINC Tl
L_SCRNL.C 76
L_SCRN2.C 82
L__SCRN3.C 84
L__SCRN4.C 85
L_WINIL.C 87
L__WIN2.C 95
L_WIN3.C 99
L_WIN4.C 105
L_WINS.C 110
L_PRINT.C 111

Chapter 3 Menu Design 116

INTRODUCTION 116

GOALS FOR THE POP-UP MENU 120
APPLICATION 121

TECHNIQUES 129

SOURCE CODE 131

POPDEMO.C 131

L_GETKEY.C 134

L_POPUP.C 134

TWO__WAY.C 137

X Contents
INTRODUCTION TO THE MOVING LIGHT
BAR MENU 139
GOALS 139
APPLICATION 142
TECHNIQUES 143
SOURCE CODE 144
BARDEMO.C 144
BARDEMO2.C 146
L_BAR.C 148
GOALS FOR PULL-DOWN MENUS 151
APPLICATION 153
TECHNIQUES 160
CONCLUSION 163
SOURCE CODE 163
PD-DEMO.C 163
PD.C 166

Chapter 4 The Data Input Screen . 172

INTRODUCTION 172
. GOALS 173
APPLICATION 175
TECHNIQUES 180
SOURCE CODE 184
IN-DEMO.C 184
L_GETFLD.C 188
L_INPUT.C 193
L_CHIP.C 195
L_COPY.C 196
L_TRIM.C 197

Contents

Chapter 5

Chapter 6

Chapter 7

xi

List Selection - 199

INTRODUCTION 199
GOALS 200
APPLICATION 200
TECHNIQUES 201
SOURCE CODE 206
LISTDEMO.C 206
L_LIST.C 207
L__STRING.C 213

Directories 215

INTRODUCTION 215
GOALS 216
APPLICATION 216
TECHNIQUES 217
CONCLUSION 221
SOURCE CODE 221
DIR-DEMO.C 221
L_DIR.C 222

Help Screens 226

INTRODUCTION 226
GOALS 227
APPLICATION 227
TECHNIQUES 232
CONCLUSION 237
SOURCE CODE 237
HELPDEMO.C 237
HELP.H 238

 MAKEHELP.C 239
HLP_IO.C 242
HLP_MENU.C 248
READHLP.C 253

Bibliography
Appendix A

index

Contents

257

258

261

Chapter 1

Accessing
‘the Display Adapter

In this chapter we will review:

® The types of display adapters.
¢ The video buffer memory map.
¢ The use of pointers for accessing video memory.
¢ Default pointer types for compiler memory models.
¢ BIOS interrupts.
e The ANSI console driver.
-4

In the first section we will discuss the display adapter, giving pdrticular attention '
to the video buffer and the techniques used to access it.

DISPLAY ADAPTERS

The widé variety of monitors and text/graphic cards curreptly available for the
. 1BM PC falls into two major groups, monochrome and colfir.

2 , Accessing the Display Adapter Chap. 1

(MONOCHROME) (COLOR)
|
: Color monitor
MDA . CGA _1E;Composite B&W monitor
HERCULES Lap-top LCD display
p— EGA
I VGA

Figure 1-1 Evolution of major display adapters

An evolutionary tree would look somewhat like that in Figure 1-1. The major
display adapters are described as follows:

« MDA .= Monochsome Display Adapter. This card was intended pri-
manly pusmcss apphcatnons It displays very well-defined

| ch rs and is not capable of displaying graphics. The
téxt, ‘is sphyed in an 80 x 25 format (80 columns with 25
R - pard requires the use of a monochrome monitor.
Hircules = Thin urd was ‘designed to provide compatibility with the
v MDA, but is also capable of displaying proprietary high-res-
S e ofutieny graphics. Thig'card also requires a monochrome mon-
] itor.
. LGA. - = Color Graphics Adapter. This card is capable of displaying
‘ both text and graphics in color. The text display is limited to
~ 80 x 25 (maximum).

EGA = Enhanced Graphics Adaptot This card is compatible with the
CGA but has increased text and graphics resolution. It sup-

. s Ports text modes gragiar than 80 x 25.
VGA i& Video Graphics Adap Compatible with the EGA, but with

still more text and graphic modes.

LCD /&= Liquid Crystal Display. Used on laptop computers, this card

: ~is usually equivalent to a CGA adapter.

,,‘\5, The newer, more advanced cards support the functions and modes found in
"'lthe earlier oties. For example, VGA cards can run programs written for the CGA,
and the Hergples card emulates the MGA. K we write our software so that it is

compatible ¥ Ah the CGA and MDA, wegaln etmpaﬁbﬁty mme newer adapt-
ers. i

1 !

. g
i

. COMPOSITE DISPLAYS

k!
’ :

PGA wo:”mth two dnsplay monitors: color and black-and-whlte

¥ W limited smfccss

Back-and-white composite display tries to show color as st des of .

co-ol) |

]

The Video Buffer 3

Color characters displayed on composite monitors are often unreadable. The
LCD found on many laptops can be grouped with the composite displays since
most LCD monitors use grey levels instead of colors.

~ Users of such B&W displays often use the DOS “‘mode’’ command to disable
color, allowing only normal or intense text, which is more legible. Entering *‘mode
bw80'" at the DOS command line sets the mode to B&W with 80 columns.

Well-written software should check the mode via a BIOS call to ascertain
the current mode the user has selected. Based on that mode, the software can
select the proper text attributes (e.g., color or not) for that monitor. Unfortunately,
if an application writes directly to the video buffer, it bypasses the BIOS and is
not affected by the ‘*‘mode’ command, and therefore may write text with color
attributes even though it is not appropriate for the user’s monitor.

Although software may be enabled to detect what type of display adapter
is present, it cannot ‘‘know’’ whether the type of monitor attached to the adapter
is color or composite. The software can only ascertain whether the B&W mode
has been set.

- Later on, we will explore techniques and code for ascertaining the type of
display adapter and the currently selected display mode. This information will be
_ essential for producing a legible display.

THE VIDEO BUFFER

The IBM PC uses a section of memory as a video buffer. CGA and CGA com-
patibles use a buffer beginning at memory segment b800. Monochrome cards
(MGA, Hercules and others) use a buffer beginning at b000. The first memory
location comtains the first character shown on the display, and the next location
contains the attribute for that character. This arrangement is known as a memory
mapped display, and any change made to the video buffer is immediately visible
on the video monitor.

If you printed ‘*hello’’ in the upper left corner of a CGA display, the memory
map would appear as in Figure 1-2. The entire dispiay on an 80-column, 25-line
display would consist of 2000 (80 x 25) characters plas 2000 attributes. Using a
column. owix,y) tcreen-based numbering system. ike upper left corner of such
a display would be 1, 1 and the bo'\tom right corner wo.ld be 25, 80. Knowledge
of the video memory map will be essential'later o3 a+ we develop our screen
writing techniques.

Characters
i | | 1]
(ol Jef 0] Df Jof [1]

}]] I J

—+

Attributes Figure 1-2 Memory map

4 Accessing the Display Adapter Chap. 1
TEXT ATTRIBUTES

Text attributes vary according to the type of video card in use. Attributes which
may be used on monochrome systems include normal, intense, reverse, and under-
line. Our programs use the header file mylib.h which defines these attributes for "
us. , ,

#define UNDERLINE 1 /« ATTRIBUTES FOR MONOCHROME CARDS
./

fdefine NORMAL 7

fdefine HILINTEN 18

sdefine REVERSE 112

On a color adapter the attribute byte can be used to set the foreground/
background colors as well as the foreground intensity and blinking characteristics.
The color attribute is mapped as in Figure 1-3.

The three primary additive colors—which are red, blue, and green—may
be combined to create the so-called ‘‘subtractive’’ colors. For example, red and
blue may be added to create magenta; red and green to create yellow. The colors
magenta, cyan, and yellow can likewise be combined (subtracted, in this case) to
form the primary colors. Cyan and yellow, for example, produce green. The “*sub-
tractive’’ color system is used in photographic enlargers. The relationship is shown
in Figure 1-4 in the color wheel.

*

Background Red

Background Green
Background Blue
l-r Intensity BLUE

UGECBERE

L Magenta Cyan
Blink [_
L foreground Blue
Foreground Green RED GREEN

Foreground Red Yellow

Figere 1-3 Bit map of color attributes Figure 1-4 The color wheel

The color wheel is only a guide. The actual colors produced depend on the
combination of red, blue, green, and intensity. For example, red and green pro-
duce brown if the intensity is not set. With intensity set ON, the result is yellow.
Table 1-1 shows a bit map naming the colors that result when the primary color
bits are turned on (intensity is set to OFF). To simplify the use of color attributes,
the following definition is found in mydef.h:

Text Attributes 5

#define BLACK /» THESE ARE FOR COLOR CARDS »/
f#gefine BLUE
fsdefine GREEN
scdefine CYAN
fdefine RED
#define MAGENTA
fdefine BROWN
sdefine WHITE
#define YELLOW 1

ANONTAEAWN—O

/% intensity set on e/
The following function-like macro sets the foreground/background colors:
" #define set.color{foreground,background)\

(((background)<<4) | (foreground))

Notice how the macro shifts the background 4 bits to the left, then combines it
(bitwise *or’) with the foreground.

) For example, using this macro, the variable attribute can be set to a fore-
. ground color of BLUE and a background color of BLACK with the call:

attribute=set.color(BLUE,BLACK);

The intensity is set HIGH for any attribute when its fourth bit is set ON (set to
a l), Wc may force this bit to be set ON for any attribute by use of the macro
jo{) which performs a bitwise ‘or’ with the decimal number 8 (which
equals oooowoo in binary). This forces the bit to become a 1.

#define set_intenselattribute) (Cattribute) £8)

TABLE 1-1. BIT MAP OF PRINCIPAL COLORS

‘ Attribute
R G B Color {decimal)
0 0 0 Black 0
0 0 | Blue |
0 1 0 Green 2
0 1 1 Cyan 3
1 0 0 Red 4
1 0 1 Magenta s
\ I 1 0 Brown 6
1 1 1 White 7

