2043

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

190

M.W. Alford J.P Ansart G. Hommel
L. Lamport B. Liskov G.PF Mullery
F.B. Schneider

Distributed Systems

Methods and Tools for Specification
An Advanced Course

Edited by M. Paul and H.J. Siegert

22103

Lecture Notes | I
Computer Smence |

Edited by G. Goos and J. Hartmanis

190

M.W. Alford J.P. Ansart G. Hommel
L. Lamport B. Liskov G.P Mullery

F. B. Schneider

Distributed Systems

Methods and Tools for Specification
An Advanced Course

Edited by M. Paul and H.J. Siegert .

TRE

Spnnger Verlag
Berlin Hendelborg New York Tokyo

| PR

Editorial Board
D. Barstow W. Brauer P Brinch Hansen D. Gries D. Luckham
 C.Moler A. Pnueli G. Seegmiiller J. Stoer N. Wirth

Editors

M. Paul

H. . Siegert

Institut fiir informatik, Technische Universitit Miinchen
Arcisstr. 21, D-8000 Miinchen 2, FRG

CR Subject Classification (1982): C.1.2,C.2,D.1.3D.2D.3,D.4

ISBN 3-540-15216-4 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-152164 Springer-Verlag New York Heidelberg Berlin Tokyo

This waork is subject to copyright. All rights are reserved, whether the whole or part of the matorial
is concerned, specifically those of translation, reprinting, re-use of itkistsations,)
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Capyright Law where capies are made for other thae privats use, a fes is

. payable to “Verwertungsgesellschaft Wort”, Munich.

© by Springer-Veriag Berlin Heidelberg 1985

Printed in Germany

Prin#ing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2145/3140-543210 E)

3

Preface -]

‘The papers comprising this volume were prepared ‘for and presented
during the Advanced Course on Distributed Systems - Methods and Tools for
Specitication. The course was held from April 3 to April 12, 1984 at the
Technische Universitit Minchen. Due to its success it was repeated from
April 16 to April 25, 1985. The organization lay in the hands of the Institut ftir
Informatik, and it was jointly financed by the Ministry for Research and
Technology of the Federal Republic of Germany, and the Commission of the

European Communities.

Research on distributed systems is in progress within universities as well
as in industry and governmental organizations. Networks, particularly high
speed local area networks, are often the spur to build distributed systems. In
the past a certain agreement on some basic models has been achievéd, e.g.on
the ISO-O0SI-Reference Model, on lower level protocols, and on some
synchronization problems. However, concepts and programming paradigms
pertinent to higher level protocol iayers, to overall concepts for distributed
systems, to design choices, and to higher level language support are still
important research areas. A discussion and presentation concerning these

issues can be found in [Lampson 81b}.

Another important research area aimed at improving software quality

and reducing softweare production costs is the sui)port of the specification .
and design phases within the software life cycle. This problem has received

more and more attention during the last decade. Looking at the relative cost
or manpower for different phases in the life cycle of software one could see a
definite shift of importance from the coding and implementation phase to
the specification and design phase. A typical figure is, that about 40% of the
total development costs are spent for specification and design. Again we have
not yet an agreement on the direction or on the methods and tools to be used

for specifying even simple systems. = .

For a successful specification of distributed systems one has to combine

*

v

general specification methods and tools as well as architectural knowledge,
modulerization concepts and programming paradigms for distributed
systams. A presentation of these topics was the major aim of the course. As
said before, all aspects involved are still in a research stage to a very high
degree. Therefore it is impoesible to give a complete picture of all ideas,
concepts, methods, and tools. Instead we have tried to show and discuss the
x;nnge of possible solutions by presenting a lpecifiéation system used by a
commercial company, and in contrast, examples and basic principles for
formal specification and verification. It is important of courge to have an
understanding of programming concepts and paradigms for distributed
systems when specifying and designing them. Important concepts and
paradigms are presented in chapter 4. As an example for a language for
programming distributed systems we have selected the Argus language.

Finally we want to express our gratitude and appreciation

to the lecturers, who have spent considerable time discussing the
course contents during the preparation period and preparing the
excellent lecture notes, and

. to all ‘membéu of our staff, foremost Mrs. U. Weber and Dr. H.
.‘._":_:civ., Halfar, who have helped with organizing this course and editing
- the lecture notes.

The authors and editors are confident, that both the course participants
-and) the rodm of these lecture notes will find an in-depth study of the
+ ppaterial cm herein rewarding for their own work.

M. Paul
H.J. Siegert

Contents‘

R eS8 6 10 o3 A X o ¢ SRR AU PR e 1
Giinter Hommel, TU Miinchen

Basic Conceptsoouiiiiiiiiii e 7
Mack W. Alford, TRW (2.1) :

Leslie Lamport, Stanford Research Institute (2.2)

Geoffr P. Mullery, Impactchoice Lid. (2.3)

2.1 Introduction tc Models..........coiueiereonccaveccacancnnonnans 7
2.2 Logical Foundation.........ceeeeeseeeresnsenneeecanenenrocanns 19
2.3. Overview...... eeascanasanscascsosns P PP 31
Acquisition - Environment e eeeeeenceceeaeraaaean 45
@eoff P. Mullery, Impacichoice Ltd.

3.1 SEATE-UP...cereerenesiaiirenasasaascacnteiancaantacnnranoeas 45
3.2 Information Gathering..........c.ceevieeeicinisecncenancnananns 62
3.3 Dats SErUCHUTINE. uvneerenenraoeacaaennaneanansasenmaraseaenns 76
3.4 Action Structuring (Isolated).........ccoeceeiiiiniennenenann. a7
3.5 Action Structuring (Combined)..........ccecueeuennencnnnnanes 103
3.6 Completion...ceeveveiiaiaiaiaeiaiiiiiiataiiniiietatecenaan 117
A Graph Model Based Approach to Specifications eeeenes .131
Mack W. Alford, TRW

4.1 The Graph Model of Decomposition.............. eeveereasaenan 132
4.2 System Requirements Definition,,..........ccccevecnncenannans 144
4.3 Software Requirements Decomposition and Analysis............. 155
4.4 Overview of the Problems of Distributed Design............... 169
4.5 Transition to Design......cvceveeeenireicnrrericocacnneacnnns 179
4.6 SUMMAYY.....cconcceeccvcsscanssnacs e feeeseacannacaasenans 201

Formal Foundation for Specification and Verification..2e3
Leslie Lamport, Stanford Research Institute (5.1, 5.4, 5.5)
Fred B. Schneider, Cornell University (5.2, 5.3)

5.1 AN BXANDLO. ... eenennenerancensseonssnasasssssssnnssnsenasonns 203

5.2 Proving Safety Properties..................... eheeccacenanans 221

5.3 Proof. Rules for Message Passing............. iiieereieeeeeaes 234

5.4 Proving Liveness Properties....c.coeeeieianeeniactaciiacinanns 254

5.9 Specifica.t.ion....;..............;.......;...;‘.’ 27e
PR

10.

Vi

Language Constructs for Distributed Programs............ 287
Giinter Hoamel, TU Miinchen

6.1 Modularity Concepts........cociiiiiinncenrecssnanacansnanns 288
6.2 Concurrency Concepts..........ccooiiiiiiiinnranciiacncacsncnas 303
6.3 Communication ConceptsS.........coiieiireiiinmiiencnncniacanns 311
6.4 Exception Handling...........ciiuiiniiiiiinnnncinncnccnoanans 322
6.5 Real-Time Concepts.........cceveerveerennccsoasoascccnasannns 327
6.6 Configuratinon Description.........cciiiiiieiirienenncencannn 332
6.7 Case Study for a Real-Time Distributed System................ 337
The Argus Language and System.............................. 343
Barbara Liskov, Massachuselis Institute of Technology

7.1 Concepts and ISSuesS..........ccveiniieecenernnacncanacanannans 346
7.2 Argus Features............cciieeiiencnterencirccacaccaraannns 357
b2 T -~ T+ - PN 366
7.4 SubsystemsS........ccveveeicicetcnccrancsannsnscrssscasonanros 3
7.5 Imwplementation.........ccciiiitiiiiiinioiacencationcansciaans 390
7.6 User-Defined Atomic Data Types.............cccieiiieiinenents 408
7.7 DiSCUSSION....ccvcvrerrennnacenccrecaccasenancascanscaseansanns 428
Paradigms for Distributed Programs 431

Frod B. Schneider, Cornell University (8.1, 8.2, 8.4)
Leslie Lamport, Stanford Research Institute (8.3)

8.1 A, B, C's of Agreement and Commitment..............coeevounes 432
8.2 The State Machine Approach..........cveiivecianncancnncenaans 444
8.3 Computing Global States...... GasesTeesavresvasacssnvecerananss 454
8.4 Other ParadigiB.......cceceuieetncncrcasocscassscoasecasscnans 468
Issues and Tools for Protocol Specification............. 481
Jean-Pierre Ansart, Agence de 1'Informatique Projet Rhin

9.1 Overview....... Cesesesceecstetosnsetasserscsasntsoascstssoacas 483
9.2 Toward a Telecommunication Software Factory........ ervaraaas 493
9.3 BExample: The OSI Transport Protocol..............ccieveecannns 518
9.4 Protocol GameB........ccccveceececacacascassnnssansessacncans 525
ConCIUSION ...coveriiariieneaiionsnnns e Ceteeeiercneanan 539
Geofr P. Mullery, Impactchoice Lid.

10.1 Introduction.......... veeens s e eerreaeeneanaas ..539
10.2 Distributed SyStemMS........cccveeecraiortcasncerorciiocaann 540
10.3 Methods.......... Weeseneceeneceseeeecscocesosarnnsnsenes542
10.4 ToOlS.......cccnccocnvnncanncns tecesacenassosacscseascsaccnns 543
10.5 Practical Use............c..s chsesesscacasenrocesesarearanen 544
ROLOLONCOB .. .c o eveerieeneenenrassnsessssesansosansnsnsosssaanes 548
IIOK . ¢ o ceeeeeieuenranrrerensssonconsscessscssnnsasnassacaasansas 565

Chapter 1 | *

Introduction :

Production of software for distributed systems, as ‘any other production

of industrial goods. requires different activities to be performed. Scannirig

the literature on software engineering we can find an enormous variety of

models for the production of software uging different notions for the

activities in the production process. In spite of this variety of models and

notions we try to filter out the essential activities:

Acquizgition and Analysis ,
Gathering, structuring, and analysing informetions on the feasibility
of a project.

Requirements Specification

' Speciﬂcation and analysis what the software system should do.

Design of System Architecture

Specification and analysis ow the logical structure of the system

should be and what each module should do.

Design of Components

Specification how each module should be realized.

Implementation :

Specification of the whole system in an executable programming
language.

Integration and Instellation

liake the system run.

An ordering of those activities in time with additional revision cycles is

often called a software life-cycle model or a phase modasl.

Rapid prototyping means to produce a quick implementation of essential
parts of the system in order to show important properties of the system to
the user as ecarly as possible. It' is especially useful to agree upon
requirements on the man-machine interface of a system and is therefore
regarded to be a part of requirements engineering. .

During all those activities a lot of specifications are produced. Our goal is
to produce better quality software and to rationalize the software production
process. This can be achieved if we try to find errors in those specifications
as soon as possible. The cost for correcting an error made in some activity
grows exponentially in time of error detection as can be seen from Figure
1.1. -

b Relative cost for

1000 == error correction

100 =

10 ==

Time of error detection

(] 1 1 L >

1 T 1 T T
Requirements Design Implementation Integration
Specification . and N -

Installation

Figure 1.1: Cost for error detection

The extent of how many errors can be detected by analytical tools
depends on the degree of formality of a specification. As Figure 1.2 shows, the
production of software would ideally start with a complete formal
specification of the requirements. By formal specification we understand a
specification formalized in syntax and semantics. In this case we could come

(

o e

to an implementation by using sémantics-preserving transformations.

4
Requirements Ideal Starting Point
Specification (
Design of System Possible
Architecture Today
Design of
Components
Conventional

Implementation ~

Goal

Formal Formatted Informal Idea

Figure 1.2: Process of software production

Conventionally the specification of requirements, of the system
architecture, and of components exists only as a vague idea in the head of
the programmer who is starting with coding immediately.

Tools available today allow to go the third realistic way using also
informal and formatted specifications. Informal specifications consist of
natural language and arbitrary graphs. In formatted specifications there is a
well-defined syntactical frame with some informal semantics in it.

Tools can be classified using the following criteria:

e Activities which are supported by a tool. Mostly a tool is applicable
only for one or few activities.

e Underlying theoretical models. Those are typical the entity—
relationship model, Petri net theory, the finite state machine, etc.

e Form of representation, either graphical or in a linear notation.

¢ Guidelines for the way to succeéd. Some tools even claim not to
restrict the user at all and support any way the user wants to take
without giving any recommendatxon '

. Degree of formahzation

e Degree of computer support Some tools even do without any

* computer suppgrt
e Availability and cost of tools.
s Scope of intended ap;)lication.

I we do not have the necessary methods and experience to design a
' system we cannot blame our todls for that. The most important methods used
in software production are the reduction of complexity by decomposition and
abstraction. In decomposing systems we try to identify well-known patterns,
often called paradigms. Such paradigms may be algorithms (as for example
sorting and searching algorithms in sequential programming) or high level
language constructs. Successful application of methods is a mental,
intuition-guided a.ct.ivlty» that can not be automized and needs a lot of
exercise and experience. '

After discussing methods and tools for specification we will take a look at
the aspect of distribution. There are different reasons for using distributed
systems: ‘ . .

o Load sharing to better exploit available processing capacity.

o Resource sharing to use expensive resources or scarcely used special

equipment.

e . Data sharing to access dxst.nbut.ed dpwbqppy

o The geographictl structugs M@y pF inberently digtriputed. The

bandwidth of the comnmnk:auon lines or }.he weakness of analogue
signals may force their processing in loco. ‘

‘e The logical siructure may be simpler e.g. if each parallel process is
loceted in = vepurate processor.

e The reliability of a system can be enhsiiced by tailoring an
appropriate structure. |

¢ The flezilbidiiiy o! a system is increased havmg the possibility to adqd
and delete single processors.

Let us have s closer lock at the aspect of reliability. Pzliability cen be
defined as the degree of suitability to perform well under specific operating
conditions during a specific time. A probabilistic measure for reliebility is
the avatlability of & system. The mean value of the availability A of a systein
is usually defined as A = MTBF / (MTBF + MTTR), with MTBF meaning the
meantims between failures and MTTR meux{ing the meantime to repair.

Reliability

Fauilt tolerance Perfection

Redundancy
Static Dynémic
I Reconfiguration
n out of m system
2<=n<m I ‘

Passive Active
stand-by . graceful degradation

Figure 1.3: Reliability of a system

Figure 1.3 shows that reliability can either be achieved by perfection,
that means constructing perfect hardware and software, or by fault
tolerance. Fault tolerance can be aéhieved by redundancy which may either
be static (n out of m system) or dynamic, requiring reconfiguration.
Reconfiguration can be done either using passive stand-by processors or
using already active processors giving up some of the less important
functions of the system (graceful degradation).

The course material has been selected such that not only some methods
and tools are presented for all activities of the software productiori process
but also fundamentals to understand those methods and tools.

‘ We also tried to present currently known thinking patterns in the field of
distributed systems as to Alle_viate the decomposition process. We are shure
that this course does not provide a closed theory or fool-proof recipes how
to produce software for distributed systems and that a lot of research and

development remains to be done.

Chapter 2

Basic Concepts

2.1. Introduction to Models

This section presents an overview of the models commonly used as the
foundation for specifying properties of a distributed systems. This will
of necessity only review a few selected models -- an review of all of the
models used by different specification techniques is beyond the time and
space limitations for this course.

Before examining individual models, it is useful to consider why one
should be interested in the subject of models for specifications. The
major motivation can be derived from the following observation: a model
is used to precisely define desired characteristics of a system -- what is
not specified cannot be verified, and what is not verified may be in
error. The purpose of a model is to precisely define specific properties
or characteristics of a system under consideration to be built or
analyzed, and provides the foundation for verifying those properties.
Different models are used to specify different properties; a)ternatively,
to express a specific property of a system, one must select from a class
of models which represent that property.

The kinds of properties necessary for the development of distributed
systems include the foliowing: sets, sequences, and structures of data;
transformations of one data set into another, and the implied input/output
relationships between the transformations and the data sets; sequences and

concurrency of data séts whlqh arrive or are generated at different points
of time; transformations of one time sequence into another; sequences of
transformations; data flow between transformation$; concurrency of trans-
_formations; conjrol of interactions - between concurrent transformations;
time to perform a transformation; and relfability/ availability of perfor-
ning a transformation in an environment of faults.

If we compare the properties of a flow chart or pseudo-code to this
1ist of desired chardcteristics, we see that’ a flow chart or pseudo-code
(structuied or otherwise) usually expresses sequence, selection, and iter-
ation of processing steps; the characteristics of data flow, concurrency,
and performance are not present. A program structure chart for a serial
program usually identifies all subprograms CALLED by a subprogram, flow of
control, and flow of data; but no concurrency would be represented.

Whether one thinks these representations to be sufficient for repre-
senting serial programs, clearly they are insufficient for addressing the
problems of concurrent distributed software. To represent these proper-
ties, we will examine the fo11owiﬁg models: mathematical function; finite
state machine; functional hierarchy; Petri Net; and graph model of compu-
tation.. ' \

2.1.1 Mathematical Function

To define a mathematical function, one must specify three things: an
input domain (e.g., a set of input variables); an output domain (e.g., a
set of output variables); and a rule for transforming the inputs into the
outputs. For the transforhation to be a function, it must always produce
the same outputs for the same input data set.

There are' several relevent aspects of mathematical functwon which
affect its applicabilty as a model for specifying distributed systems.
First, a mathemqtical‘function is not an algorithm -- a function can be
specified by providing an algorithm, but it is a design issue to construct
an algorithm which performs a transformation within a-specified accuracy.

For exampie, one can specify a transformation by
y = sin{x)
but any one of at least three algorithms can be used to accomplish it:
Al

1} y = x {for sma2ll values of x)
2) ¥y = polynomial in x (different polynomials for different

i

desired accuracy); or
3} y = Taylor series (calculated iteratively).
A second ralevent aspect of a mathematical function is that it can be
"decompesao®, i.e. ipecified by a combination of logic and lower level
functions. For example, one can define the absolute value function by
ABS(g(x)) = x if g(x)>0
-x if g(x)<0
This haes the affect oV specifying a function in terms of a structure of
functions, and *ius specifying an algorithin approach. The structure can
be described in terms decision tables, pre-conditions and post-conditions,
or flow.charts., Since one would like to specify a transformation and not
an algorititm in order to separaté requirements from design, use of a

s

mathamatical function appears to be very desirable.

e HOS specification approach [Hamilton 77) provides techniques for
decomposing any arbitrary function in terms of logical operators JOIN,
INCLUDE, and OR together with lower level functions, and repeating the
decomposition until the lowest level arithmetic operators are encountered.
This process decomposes both control flow and data flow simultaneously,
and provides tools to check that the two are consistent.

However, a this approach is limited because a mathematical function
inherently has no memory -- given an input, it produces an output but
saves no data. This means that a collection of mathematical functions
cannot be used to specify the reqpired data contents of distributed
computer systems. Attempts to use recursion (i.e., a function invoking
another copy of itself to process a subsequent input) to overcome the lack
of memory results drives the comblexity of the function description
exponentially.

~ In view of this limitation, it appears that a mathematical function is
a2 necessary ingredient but not a sufficient model for specification of a
distributed system. By itself, jt can only be used to specify functions
which require no memory; the model must be augmented to address the

10
problems for which distributed systems are most widely used.

2.1.2 Finite State Machine
The concept of a Finite State Machine (FSM) seems to be taflor made
for the specification of processing for a data processor., Essentially, an
FSM is composed of a set of inputs X, a set of outputs Y, a set of states
S, an initial state So, and a pair of functions which are used to specify
the outpufs and state transitions which occur as a result of an input.
The transformation function specifies the outputs which result from an
input when the FSM is in any of its pbssible states; and the state tran-
sition function specifies the next state which results from an input for
each possible state. In other words,
" X is the set [Xi] of inputs
Y is the set [Yi] of outputs
S is the set [Sj] of states
So is initial state
F maps Xi and SJ onto Yi ’
G maps Xi and Sj onto Sj+1, the next state.
Figure 2.1 provides an illustration of such a model.

INPUT TRANSFORMATION OUTPUT
y el Yi .
STATE TRANSITION

* Figure 2.1: Finite State Machine Mode!

