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Preface

This second edition of Applied Numerical Analysis continues the emphasis that
the first edition placed on applications. The range of topics, much broader than in
most elementary texts, has been retained, so the student is introduced to a wide
selection of numerical procedures, and several newer methods have been added.
The leyel of the material is still directed to the sophomore and junior student in
engineering, science, mathematics, and computer science. An informal tone and
dependence more on demonstrations than on rigorous proofs makes it accessible
to a student who has had only the usual calculus background and an introduction
to ordinary differential equations. This aiso makes the book a valuable guide and
reference to the practicing engineer or applied mathematician.

The book has been” strengthened in many ways. The already extensive
problem sets have been expanded, and each chapter now includes applied
problems and projects, in addition to standard exercises for practice in using the
methods. These applied problems are placed in a separate section at thé end of
each chapter, while the exercises are keyed to the chapter sections, in order to ease
the instructor’s burden in making assignments. Answers to a few selected exer-
cises are included in the text; in the exercise sections for each chapter we have
identified such exercises by a small pointer (triangle) in the margin.

Significant new material has been added and many of the chaptérs have been
extensively rewritten to improve the clarity of exposition and to provide addi-
tional illustrative examples. The order of chapters has been modified; most
significantly, the chapter on solving linear systems has been moved up to become
Chapter Two. At the same time, topics from linear algebra are more extensively
covered so that the treatment is now relatively independent of any prior exposure
in this area. The discussion of eigenvalues and eigenvectors is greatly expanded;
however, for motivational reasons it continues to be placed in a later chapter with
boundary-value problems, and so it is closer to the chapters on partial-differential
equations, where the concepts are used in discussing stability. Other topics have
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vi  Preface

been regrouped to mprove the togical flow of rdeas Back reterancee to carher
topics frequently occurs when mterrelated subjeats ne considered

Lhe strong anterdependence between compuatars and numancal anthsis s
recognrzed by completeiv rewnitten computer progiams FORTRAN 15 sull the
fanguage of chowee  The programs are grouped at the condusion ol Cich chaptar
for case of reterence and also because the studant should normath «im some
insight and ill\(icrstaln(l|ng of the methods by parson div | arlormim., the computa
tions before he calls on the computer to erind out numbars tor him Most ol the
computer programs arc in the form of subroutines which the instructor moy wish
to incorporate in the FORTRAN hibrary for rcady  weess by studont wiitten
programs The programs dare written S0 as to be rcadily undorstandable by the
student, and some concessions of efhaency are made i the imtarasts of dasty In
the first chapter, an example ot the program-devetopment process s prosanted in
order to help the students learn how they should write progrums A wform il
structured language 1s used to deseribe many of the aleonthms Sinec TORTRAN
15 not a structured language. the programs may serve as examples of how one
makes the transition from algorithm to computer program

A section on errors, with emphasis on computer anthmetic and the round oft
problem, 15 included. Rather than place this separately as an introduction, it 1s
incorporated within Chapter Onc at a e whea the student is ready to appreaiate
the mmportance ot the topic” Fhroughout the book the subject of crrors s
continually stressed 1 connection with the cffectivencess and cthaenay of the
mcthods  Alternative methods are contrasted and compared trom the standpornt
of the computational effort required 1or a desired accuracy of result

There v more than cnough material tor a tull year's course but by .
judicious selection ot topics, the book can serve shorter cotnses Because the
book 18 1eadable by atselt, many students wrl find 1t a helptul teforence 1o 1opics
and procedures during their professional carcers, even though thoy have not
specifically covered the marerial in a class

[ wish to thank several colleagues who have sugeested improvements i the
book Paul W Davis (Woreoster Polvtechime nstitute), Richatd Franke (Naval
Postgraduate School) Stanlcy Prewsar (Polvicchnie Institute of New Yorky and
Stanley L Spiesel (Univeisity of T owdlh

San 1 ws Obispo CH G
November 1977
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Chapter One

Solution
of Nonlinear Equations

1.1 THE LADDER IN THE MINE

It is not uncommon. in applied mathematics, to have to solve a nonlinear
equation. If you worked for a mining company the following might be a typical
problem: '

There are 1wo intersecting mine shafts thar meet at an angle of 123°, as shown
in Fig. 1.1, The straight shaft has a width of 7 feet. while the entrance shaft is
Y feet wide. What is the longest ladder that can negotiate ‘the turn? You can
neglect the thickness of the ladder nembers. and assume it is not tipped as it is
maneuvered around the corner. Your solution should provide for the general
case in which the angle. A. is u variable, as well as the widths of the shafts.

YN
/ / A =123
S .

Figure 1.1 e —




2 ‘ Solution of nonlinear equations

As the analysis below shows, to solve this problem we must solve a
transcendental equation for the value of C:

9cos(m—123°— C)__7 cos C
sin?(w—123°~C) sin?C

and then substi}uté C into

¢= 9 +.»7 '
sin (w—-123°~-C) sinC’

Finding the solution to an algebraic or transcendental equation, as we must
do here, is the topic of this first chapter.

Here is one way to analyze our ladder problem. Visualize the ladder in
successive locations as we carry it around the corner; there will be a critical
position in which the two ends of the ladder touch the walls while a point along
the ladder touches the corner where the two shafts intersect. (See Fig. 1.2.) Let C
be the angle between the ladder and the wall when in this critical position.

Consider a series of lines drawn in this ¢ritical- position—their lengths vary

with the angle C, and the following relations hold (angles are expressed in radian
measure):
w2 __wW

'€1=sinB; 2_sinC;
B=n—-A-C;
O= b+ by= 2 e

+ .
sin(m—A—-C) sinC

The maximum length of ladder that can negotiate the turn is the minimum of
¢ as a function of -angle C. We hence set d¢/dC=0.

d¢ _wycos(m—A-C) wycos C_
dC sin*(w—-A~-C) sin? C

Figure 1.2



1.2 Method of halving the interval 3

We can solve the problem if we can find the value of C that satisfies this
equation. With the critical angle determined, the ladder length is given by:

w2 W,

€=— + - .
sin(m—A—-C) sinC

In this chapter we study methods to find the roots of an equation such as.in
our ladder-in-the-mine example. Much of algebra is devoted to the “‘solution of
equations.” In simple situations, this consists of a rearrangement to exhibit the
value of the unknown variable as a simple arithmetic combination of the constants
of the equation. For second-degree polynomials, this can be expressed by the
familiar quadratic formula. For third- and fourth-degree polynomials, formulas
exist but are so complex as to be rarely used; for higher-degree equations it has
been proved that finding the solution through a formula is impossible. Most
transcendental equations (involving trigonometric or exponential functions) are
likewise intractable. .

Even though it is difficult if not impossible to exhibit the solution of such
equations in explicit form, numerical analysis provides a means where a solution
may be found, or at least approximated as closely as desired. Many of these
numerical procedures follow a scheme that may be thought of as providing a
series of successive approximations, each more precise than the previous one, so
that enough repetitions of the procedure eventually give an approximation which
differs from the true value by less than some arbitrary error tolerance. Numerical
procedures are thus seen to resemble the limit concept of mathematical analysis.

1.2 METHOD OF HALVING THE INTERVAL

The first numerical procedure that we shall study is that of interval-halving.*
Consider the cubic

Cf(x)=x*+x*-3x-3=0.

At x=1, f has the value —4. At x =2, f has the value +3. Since the function is
continuous, it is obvious that the change in sign of the function between x =1 and
x =2 guarantees at least one root on the interval (1, 2). See Fig. 1.3.

Suppose we now evaluate the function at x = 1.5 and compare the result to
the function values at x=1 and x =2. Since the function changes sign between
x = 1.5 and x = 2, a root lies between these values. We can obviously continue this
interval-halving to determine a smaller and smaller interval within which a root
must lie. For this example, continuing the process leads eventually to an approxi-
mation to the root at x = v3 = 1.7320508075 . ... The process is illustrated in
Fig. 1.4.

* The method, also known as the Bolzano method, is of ancient origin. Some authors call it
the bisection method.
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1.2 Method of halving the interval 5

While a graphic method, as illustrated in Fig. 1.4, may be suitable if we want
only an approximate answer, to obtain more accuracy we need to write a rule to
do it mathematically. We should also express our algorithm (the technical name
for a systematic procedure) in a way that makes it easy to implement the method
with a computer program. We shall adopt a style of expressing algorithms that
emphasizes the orderly structure.

Method of halving the interval (Bisection method)

To determine a root of f(x)=0, accurate within a specified tolerance value, given
values of x, and x, such that f(x,) and f(x,) are of opposite sign.

DO WHILE j/x,— x,|=tolerance value,
Set x;3=(x; + x,)/2. )
IF f(x3) of opposite sign to f(x,):

Set x,= x,.
ELSE Set x, = x,.
ENDIF.
ENDDO.

The final value of x, approximates the root.

Note. The method may give a false root if f(x) is discontinuous on [x,.x.].

Applying the method to f(x) = x* + x*> — 3x — 3 = 0, we get the jesults of
Table 1.1. The repetition of our algorithm is called iteration and the successive
approximations are termed the iterates.

The entries in Table 1.1 indicate the necessity of representing values of the argu-
ment. x. as well as of the function. f(x). only approximately when we carry a limited
number of decimal figures. In floating-point operations on digital computers. there is
a similar inaccuracy in our work because computers retain only a limited number of
significant digits. Note that this is true in all computations, not just in numerical
methods. We shall give attention to such “‘round-off errors” later. The distinction
between numerical methods and numerical analysis is that the latter term implies
the consideration of errors in the procedure used. Certainly the blind use of any
calculation method without concern for its accuracy is foolish.

Whether one rounds to the nearest fractional value or chops off the extra
digits will make a difference in the effect of the round-off crrors. In Table 1.1, the
figures have been chopped after five places, which is similar to the action of most
digital computers.

In addition to the limitation on accuracy because we retain only a limited
number of figures in our work, there is an obvious limitation if we terminate thé
procedure itself too soon. One important advantage of the interval-halving
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1.2 Method of halving the interval 7

Table 1.2 Halving the interval for fix) = e* -- 3x = ().

Maximum

Iteration . €rror in
number  x, X, X4 fix, flxy) f(x3) X

1 1.0 2.0 1.5 -0.028172 1.38906 -0.01831 0.5

2 1.5 2.0 1.75 -0.01831 1.38906 0.50460 0.25

3 1.5 1.75 1.625 —-0.01831  0.50460 0.20342 0.125

4 1.5 1.625 1.5625 —0.01831 0.20342 0.08323 0.0625

5 1.5 1.5625 1.53125 —0.01831  0.08323 0.03020 0.03125

6 1.5 1.53125 1.51562 -0.01831 0.03020 0.00539 0.015625*

o - 1.51213. ..

* Actual error in x, after 5 iterations is —0.01912.

method, beyond its simplicity, is our knowledge of the accuracy-.of the current
approximation to the root. Since a root must lie between the x-values where the
function changes sign,T the error in the last approximation can be no more than
one-half the last interval of which it is the midpoint, and this interval is known
exactly since the original difference, |x; — x,|, is halved at each iteration. For
other methods, the accuracy determinaticn is much more difficult.

The accuracy of a computed value is usually expressed either as the absolute
error (true value — approximate value) or as the relative error (absolute error
divided by true value). The relative error is often the better measure of accuracy
for very large or very small values. Sometimes the atcuracy is expressed as the
number of digits that are correct; in other cases, the number of correct digits
after the decimal point is used. When the true value is unknown, it is impossible
to express the accuracy with exactness, and approximate accuracy must be
specified. Frequently we will put bounds on the size of the error.

The method of halving the interval applies equally well to transcendental
equations, as do the other methods of this chapter. Table 1.2 shows the results
when we apply the method to f(x) = e* — 3x = 0, which has a root between
x =1and x = 2.

The method of interval halving requires that starting values be obtained
before the method can begin. This is true of most methods for root finding.
Getting these starting values can be done by making a rough graph, by trial
calculations, or by writing a search program on a computer or programmable

T Observe that if the function is discontinuous, f(x) may change sign without having 4 root
in the interval. Unknown functions should be examined for continuity before attempting to
evaluate their roots.

£



calculator. Perhaps the best way is through interactivé graphics, letting the
computer draw curves at the direction of the user, and varying the parameters at
the console to find approximate values of roots.

1.3 METHOD OF LINEAR INTERPOLATION

While the interval-halving method is easy and has simple error analysis, it is not
very efficient. For most functions, we can improve the rate at which we converge
to the root. One such method is the method interpolation.* Suppose we assume
that the function is linear over the interval (x,, x,), where f(x;) and f(x,) are of
opposite sign. From the obvious similar triangles in Fig. 1.5 we can writet

X3~ X3 - flxs)
Xy Xy f(x2)—f(xl),
. X3 = X, - _ﬂ__(xz - xy).

flx2) = f(x1)

F) |

Sixz)
| l Slx2)—flx1)

X X3, X2 X

Xo — X3

Xe- X}

Figure 1.5

* This is also known as the method of false position, and by the Latinized version regula
falsi. It is also a very old method. ,

¥ Note that. since [f(x,) — f(x,)}/(x, — x,) is the slope of the secant line, which approxi-
mates the slope of the function in the neighborhood of the root, the equation can be
considered to be x; = x, — f(x.)/(slope of function). Compare to Newton’s method, in the
next section. '



