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PREFACE

In 1981 a Japanese-Polish cooperation in the subject "Numerical
.Methods of Optimization and Game Theory" was established. It was spon-
sored and supported respectively by the Japanese Society for Promotion
of Science and by the Polish Academy of Sciences.

This cooperation involved scientists from Hiroshima and Osaka
Universities on the Japanese side and the Systems Research Institute
of the Polish Academy of Sciences on the Polish side.

The cooperation resuited, among others, in a number of joint pa-
pers and a book "Constructive Aspects of Optimization", Paristwowe Wyda-
wnictwo Naukowe (Polish Sciemtific Publishers), Warszawa-16dZ, 19@5.

Formally the cooperation ended in 1983 but it has been continued
on inférmal basis and the present book is its result.

Among the authors contributing to the book Professor Koichi -Mizu-
kami and Mr. Naofumi Iwata' are with the Department of the  Information
and Behavioral Sciences of the Hiroshima University, Professor Yoshiy-
uki Sakawa and Dr. Yuji Shindo are with the Department of Control Engi-
neering of the Osaka University, Professor Constantin Virsan is with
the Department of Mathematics, National Institute for Scientific and
Techhical Creation, Bucharest, Romania, while all remaining contribu-

tors are from the Systems Research Institute of the Polish Academy of
Sciences.

K. Malanowski . K. Mizukami
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INTRODUCTION = .~

This book consists of ten independent and self-contained chapters
written by different authors; Most of the oresented results belong to
the authors themselves. They are either published here for the first
time or having been partially published elsewhere they are presented
Here in a different form. The proofs of the results are sometime omit-
ted, but the detailed references are provided.

The main part of the presented material (Chapter 1 through 6) is
devoted to modelling and optimization 6f distributed parameter systems.
Thus, among them the three first chapters concern theoretical aspects
of optimization, while in the next three some numerical problems are
presented.

The material presented in Chapter 7 is very close to that in the
previéus part, namely there is proposed an iterative algorithm of.sol-
ving some optimal control problems for systems described by ordinary
differential equations.

Chapters 8 and 9 are devoted to some game-theoretical problems.
Finally, Chapter 10 concerns calculation of the so called surrogate
constraints in mathematical prograhming problens.

A short outline of the results presénted in all chapters is inen
below. ) v'
~ Chapters 1 ané»Z concern sensitivity analysis of solutions to op-
timal control problems for distributed parameter systems.

More precisely, the dependence of solutions on a parameter, which
enters the data of convex optimal control problems subject to inequality-
tybe constraipts is investigated. It is shown that in the considered
cases the solutions to the optimization problems, as functions of the
paf%metex; are directionally (conically) differentiable and the respec-
tivé_right-derivatives can be found effectively as the solutions to )
auxiliary quadratic optimal control problems. Sufficient ccnditions
»under.which these functions are Giteaux differentiable are obtained.

In this analysis the main difficulty is created by the presance
of inequality type constraints. In Chapters 1 and 2 two different met-
hods of coping with this difficulty are presented.

In Chapter 1 the results of the directional differentiability of
the mapping of projection onto a closed and convex set in a Hilbert
space are exploited to obtain « fferent.ability of sélutions for some
state and control constrained coptimal control problems with lincar con-

straints.

In Chapter 2 the Lagrange formalism for optimal control problens
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sukject to convex pointwise constraints is used. This approach allows
to analyse the diffeicntial properties of both the solutions and the
uessociaved Lagrange mulbtipliers, it requires'however, Lipschitz conti—
nuity results for both.these functions. For the considered problem
Lipschitz continuity isbproved.

Chapter 3 concerns,problemé of parametric optimal control for 1i-
near evolution eguations and some free boundary problems. In this class
of problems control is executed through coefficients of the involved
elliptic operators.

Since these optimal control problems may not have solutions a con-
cept of generalized solution is introduced. This cencept is based on
the notion of the so called G-convergence of operators.

The results concerning G-convergence of the second order elliptic
operators are presented with emphasis on isotropic operators. They are
used to define generalized parametric optimal control problems for pa-
rabolic equations and variational inequalities. These generalized pro-
blems have solutions and for them necessary conditions of .optimality
are presented. '

One of the most important areas, where parametric optimization
problems occur in practice is optimal design of mechanical structures.

Chapters 4 and 5 are devoted to numerical methods for solving so-
me optimal design problems.

Chapter 4 deals with optimal design of .a plate with respect the
fundamental frequency of its free vibrations. The volume of the plﬁte
is fixed, while its thickness is subject to. optimization. The optimi-
zation problem consists in maximizing the smallest eigenvalue of the
fourth order elliptic eigenvalue problem describing free vibrations of
the plate.

To approximate this problem the finite element method is employed.
The convergence of approximation is proved.

The discretized problem is nonsmpoth in-the case where the smal-
lest eigenvalues are multiple, therefore to solve it a method of non-
differentiable optimization is used. Numerjcal examples are presented

In Chapter 5 an optimal shape design problem for two-dimensional
elastlc body, subject to external forces is lnvestlgated Like in the
previous papers by the author the approach used is based: on direct

.minimization of the performance index with respect to some shape pafa%

meters tfeated as decision variables. However, in contrast to the pre-
vious papers, perforated domains are considered. A method of homogeni-

zation is applied, allowing to approximate the orginal problem with a
reasonable accuracy.
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A two level desxgn of the shape is proposed and it is illustrated by
numerical examples.

Chapter 6 concerns numerical methods for solving multiphase prob-
lems of Stefan type in several space variables.

The mefhod exploits the fixed domain formulation of the problems
in the form of variational inequalities of the parabolic or mixed el~-
liptic-parabolic type. For this formulation stable approximation sche-
mes are constructed using finite elements in space and finite differe-
nces in time variables. The échemes provide a simple time-stepping al-
gorithm. Presented results of numerical experiments indicate the effi-
ciency of the proposed algorithm both for parabolic and for degenerate
elliptic-parabolic Stefan problems.

Chapter 7 presents a modification and simplification of an effi-
cient numerical algorithm of solving optimal control problems for sys-
tems described by nonlinear ordinary differential equations where the
cost functional depends both on the terminal state and the whole tra-
jectory. The original algorithm was developed by the author and Y.
Shindo. ' v

‘Chapter 8 is devoted to effective construction of a quasi-optimal
feedback solution for linear differential games, without the necessity
of solving the partial differential equation associated with the opti-
mal strategy. The analysis is performed from the point of view of the
first player’. Both deterministic and stochastic cases are considered.

In the deterministic case construction of a quasi-optimal feed-
back requires the knowledge of the strategy used by the second player.
In this case a numerical example is provided.

In the stochastic case it is allowed that the second player uses
ronanticipating processes as the admissible strategies, and it is
shown that the analitical form of the quasi-optimal feedback for the
first player is independent of the strategy used by the second player.

In Chapter 9 the feedback Nash equilibrium strategies are considered
"for continuous~time, deterministic two-person differential game with
a nonlinear state equation ‘and guadratic cost functionals. The nonli-
nearity of the state equation appears as a regular perturbation.

The optimal feedback strategy is obtained in the form of 2 series.
The elements of. the series can be calculated by solving a matrix Ricca-
ti equation.and a sequence of quasi-linear partial differential equé-
tions. ‘

- Several theorems concerning the asymptotic properties of the ap-
proximations of the Nash equilibrium strategies are inclﬁded.

Chapter 10 deals with calculating surrogate constraints mainly
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for integer programming problems. It is well known that the surrogate
dual problems can offer effective bounds on the primal optimal values.
Knowledge of these bounds is of a great importance to any branch-and-
bound algorithm. However, solving of the dual problems is rather dif-
ficult since it requires maximizing of a quasi-concave, often discon-
tinuous, function.

A certain method for calculating surrogate constraints is analy-
sed theoretically and numerically.

The proposed algorithm is based on thé concept of the quasi-sub-
gradient generalizing the notion of the subgradient for quasi-concave
functions.

The convergence of the algorithm is proved and some numerical re-

sults are presented.
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-.except at x=0. At the polnt .Yy=0 we have for h=:1 and for e >0:

Chapter 1

-

DIFFERENTIAL STABILITY or PROJECTION IN HILBERT SPACE

Ry

ONTO CONVEX SET. ,mgﬁLICATtons TO SENSITIVITV
ANALYSIS OF OPTTMAL CONTROL PROBLEMS

\_:

. ‘Jan Sokolowskj :

¥

1. Introduction

The paper is concerned with thz differential stability of solu-
tipns of variational inequalities w1th respect to the parameter. The
first part of the paper . is devoted to the differential stability of
the- pro;ection in Hilbert: space onto a closed and convex subset. We
exploit: the notion of the conical differentiability of the projection
mapping{-Using the results on conical differentiability «f the projec-
tion we derive the form of the sensitivity ‘coefficient o: an optimal
control with respect to the parameter for the constrained optlmal con-
trol problems for- distr;buted parameter systems. i Cot

We start with the following examples. ’

Examgle 1;1 v S .

Let us consider an elementary example of the projection mapping P ( )
in R onto the set K—[O t®), ’
In the case we have

+L!x , Xxz0

VxeR : P (x)=x =4 | , L (1.1)
K [ 0,, x-<0 ’ ’ )

It -ig easy to see that the mabptng x-rx* is differenti&bie everywhere

¢ B
(oL
0

(y+emt = y* + en?t (1.2)

therefore for ¢ >0 .
»
[ty +em¥ -y*]/e=n* =11ty + emr ¥ - y¥) /e R € O

) IR e+Q . i S ’ w
hence'aﬁ y=0 we have

Po(y +eh) =P (y)+eQ(h) +o(e) . (1.4)

-




where the mapping Q(.) : R-»R is.defined by o(h)=h"*, vher.

Ir the notation of the paper the mapping Q(.) is called the cc-
nical differential” of the projection Pg(.) at y=0.
Let us recall how the’projection mapping 'PK(.)'is related te the

variational inequalities. Since for a given xe&R we have

W+‘Xﬂé(vtxﬂ:.yV€K (1.5)

4
then by a standard argument it fecllows that the element x =PK(x) is

given by unique solution of the fellowing variational inquality:

x+eK : (x+—x)(v—x+)30, ¥Yv € K ‘ (1.6)

In this paper we will use the results on differential stability of the
projection-in a Hilbert space fer the lecal sensitivity analysis of
optimal controls to constrained, convex cptimal control problems de-
pending on the parameter. Let us si.ow how the differential stability
of eptimal contrels is related to the differential .stability of solu-
tions of variational inequatities. We present a simple example of -the

optimal control problem for ordinary differential equaticn.

Example 1.2

We denote by LZ(O,T) the space of square integrable functicns cn
(0,T), T»>0. L2(0,T1 is Hilbert space with the scalar prcduct

T
(yiz) =/ y(t) z(t)at , ¥y,z €L%(0,T) (1.7)
L7 :0,") o

We dencte by HI(O,T) Sobolev space:

(0,7 = (s er%0,T) ]%;eLz(o,'r)} o " (1.8)

Y

Space Hl(O,T) is Hilbert space with the scalar product

. .
d dz .

=7 {y(t)z(t) + X (t) S (£)1dt (1.9)

H (0,7 o dat’ "’ dt '

(y.2)

In order to define an optimal control problem we introduce the state

equation, the cost functional and the set of admissible states of the
form: ’




. . - ot
state equation: .

H(e)=y(t) +u(t) , te’0,T)

. (1.10)
y(0) =0

uf.) €‘L2(0,T) denofé; control
y(.) €H1(0,T) denotes state

‘cost functional: b

y T 2 a T 2
J(u) =5 f (y(t) —y (t))dt +5 f (u(t))“dt (1.11)
2! d 2] ,
a >0, where y,(.) GI?(O,T) is given element - _
set of admissible states:
¥,9=(¥(.) €H'(0,T) | y(0)=0, asy(T) ¢b) (1.12)

where a,b €R are given constants.

We denote by uje t2(0,m an cptimal control which, minimizes the cost
functional (1. 11) subject to state equation (1.10)  and.state constra-
ints (1. 12); we denote by Yo (.)€ H (0,T) the optlmal state. Let us
consider the differential stablllty of the mapping

12(0,1) sy — u e L2(0,m (1.13)

Let h(.) éI.(O T) be a given element, denote by u.e L (o,T), ee[o 5),
§ >0, an optlmal control which minimizes the cost functlonai

3_(w) =3 P e - yg(t)-eh(t))?at 4’% 7 (u(en?ae
o . o
subject to sfate equation (1.10) and state constraints (1.12).

Denote by y enl (0,T) the optimal state given by a unique solution of
the state equation-, :

dt
T (B =y () +u (t), te(0,m) RERUN
y,(0) =0 C(1.15)

It can be verified that the optimal'stéte,is given by a unique solu-
tion of the following variational inequality:



find an element yee K such that
T : E
- r - .
aly _r¢-y ) ! ya(e)(e(t) ~y (e))ar . (1.16)
’ v¢ € K

., def o 1 1
where - K ~= Y. a and the bilinear form . a(.,.) :H (0,T)xH (0,T)+R .
is defined as follows

aly,z) 9&f

[ IR |

{ay(£)z(t)-ay(t)2(t)-ay(t)z(t)+(1+a)y(t)z(t) At ,
¥y,z €H'(0,T) (1amn

here: we denote }"=dy/dt.

We can apply the results on differential stability of the metric pro-
jection in Hilbert space presented in the paper to the variational
inequality (1.16). It follows that for e >0, ¢ 'small enough

y€=yo+ez+o(e) in Hl(O,T) (1.18)
where |lo(e) ||

- ulco,r
given by a unique solution of the following variational inequality:

/e >0 with ¢e40. The elément zeHI(O,T) is
y - . ‘

find an &lement - 2€ S such that ' -
T

a(z,¢-z) 2/ h(t)(¢(t) -z(t))dt , Y € S (1.19)
[¢)

where the cone S is given by

S={¢€H(0,T) | ¢(0) =0, _ (1.20)
$(T) 20 if y _(T) =a,
¢(T) <0 if y (T)=b,

T
a(y0,¢) = J ya(t)e(t)dt}
[e)

From (1.18) and (1.14) it follows that for e 3>0, ¢ small enough:

u_=u_ +eq+o(e) in L2(0,T) (1.21)

where [lo(e)]| , /e +0 with e+0. .
L )

17



It can be vefifieé that the element (;tL%{Q,T):is given by a'ﬁmiquek
solution of the following optimal,contrpl,problem:

Cfi an e’lement qeL (0 T) whlch minimizes t.,he cost
'fuﬂ&tlonal ) :

I(u) f (z(t)-h(t)) 23t + 2.

5 (u(ti))zdt - <l ‘(1.22)

0w

subject to state equation (1:10) and state constraints:

2(M's0 if  y (T =b , C(1.23)
Z(T) 20 if y (Th=a e v ©o(1.24)
aly, ,z) -kf yd(t)z(t)dt‘ e ' . (1.25)

_The element q 3in (-1721')—’ is called the semsitivit  coefficient for the
‘optimal control u,. The Example 1.2 .shows- that the sensitivity coenli-
cient for an cplimal ‘control can be obtalned in. the form of -an optimal‘
solutlon of the auxllnaly notlmal control problem. :

The different:al stability of. solutione of variatlonal inequalities .
with respect to the perturbations of the rlght-hand side has heen stu-
died by Mignot [19] and Haraux [7]+ 1n L19] the notion of a polyhedric
convex subset of Hilbert space is introduced and the form of theé .so~
called conical dxfferentlal of the progection onto such a subset i's
derived. :

Several results on dlfferentlal stability of metric:projection in
Hilbert space onto convex set are glven by -Holmes [8} and by Fitzpat—{
rick and Phelps [5], we refer the reader also to [37] for the: Telated
results. : i

The differential stability of-solutions‘to constrained matnemati-‘s
cal programming problems is in: ecthated e.g. in {4 9, ISI The re-.
sults presented in [ISJ has been used in [16, 17] in order to .derive
the form of the right-derivatives of solutions to, convex, coﬂbtrained )
optimal control problems for systems described by ordlnary dlfferen—
tial ‘equations. Sensitivity apalysis of the constralned optlmql Gon-
trol problems for partial dlfferentlal equations is considered in [18j
using the similar method as in [16, 17] - L

In this paper the method proposed by the author [24 25 26, 29]
based on the conical dlfferent;ablllty of the pro;ectlon is used in -
order to derive the form of the ‘right- derivative of ap optimal coﬂtrol
for optlmal control problems for distributed parameter systems with
respect to the parameter. In this chapter the right - derivative of ‘an



optimal control is called the sensitivif& coefficient of an éptimal
control with respect to the parameter.

The main result which is used in our method of the sensitivity analy-
sis [24, 26] is the following: the sensitivit§ coefficient of an opti-
mal sclution with respect to the parameter can be derived in the form
of an optimal solution of an auxiliary constrained optimization prob-
lem. ' ‘

For further results on differential stability of solutions to varia-
tional inequalities as well as on the sensitivity analysis of the op-
timal contrbl problems we refer the reader to [22, 23, 27, 28].

[30-36] the applications to the shape sensitivity analysis of free bo-
unaary problems are given. The r:lated results on the shape sensitivi-
ty analysis of optimal control piosblems are presented in [25, 26, 29].
Tkg outline of this chapter is following. In Section 2 the projection
mapping in Hilbert space .onto conQex, closed subset is considered. The
noticvii of the conical differentiability of the mapping is introduced.
In Section 3 an abstract result on conical dlfferentlablllty of the
projection mapping is presented. Section 4 is concerned with the dif-
ferential stability of solutions to an abstract, constrained optimiza-
tion problem. An example of constrained optimal control problem is
provided.

Finally in Section 5 the results on differential stablllty of optimal
controls for two examples are presented.

In the paper the standard notation is used [11]. The related results
concerning variational inequalities and optimal control problems can
be found in [3, 6, 10, 12, 13, 14, 21].

We use the following notation [11].

Let @ cR™ be a given domain with the smooth boundary I'=3Q. We denote
by Lz(n) ‘the space of square integrable functions on Q. Lg(ﬂ) is
Hilbert space with scalar product of the form:

(y,z) 2 = fy(x)z(x)dx , Vy,z€ Lz(n) (1.26)
L(e) @

We denote by H'(d), H2(2) Sobolev spaces:
#l(2) = (o €L%(2) |3%‘?feL2(n), i=1,...,n} (1.27)

#2(2) = (¢ €eL2(a) |——SL 2% 2 (2), i,3=l,...,n}  (1.28)

'ax X,
i

Spaces Hl(q), HZ(Q) are Hilbert spaces [11] with the scalar produc-
ts:



(yiz) , =1 iy(x)z(x) +9y(x).v2(x)}dx
H(Q) @

: )
here we denote Vy(x) =col (%ﬁ— ,...,gi— )
. 1 o

(y,z) 2 = [ {y(x)z(x)+Vy(x) .Vz(x)+ay{x).az(x) }dx
H (9) ) ' ,

a2y

7 -
1axi

where Ay =div(vy) =
i

e

Sobolev space H(l)(n) is defined as follows [11]:

H;(Q)={¢5H1(Q)I¢(x)=0 on a2} _ (1.29).

It is Hilbert space with the scalar product:-

_ Ay,2) 4 = sVy(x).vz(x)dx . .- {1.30)
-~ H () Q ) R

’ 2. . Projection ma‘pping‘ in Hilbert space

Let H be a separable Hilbert space, KcH a convex and closed
. subset. Let there be given a bilinear form :

a(.,.) : Hx H— R » B (2.1.),

which is coercive and continuous i.e.,

a(v,v)zu]lv[lé, «a>0, ¥veH (2.2)

3

s sulvlly lzlly. o wezen @)

AT o

- Let H' denotes the dual space of H and let fel-l be a given element.
) 'We denote by- -P(f) a unique sqution of the varlational inequala.ty. S

y=P(f) eK R ER AR
oy . : -+(2.4).
a(y,v=y) 2 <f,v=y >, ¥ve€Kk :

where  <.,.> is the a duality pairing betwden H’. and H,



Remark 2.1:

If the bilinear form a(.,.) is symmetric i.e., a(v,z)=a(z,v), Yv,z€H
then .
y=P(f)=argmin{%a(v,v)-<f,v >| v €K} (2.3)

It can be verified that the mapping
H'2f ———— P(f) €H C(2.6)

is Lipschitz continuous:

fiece) -pCEpllys B lle-£,0 . vE f e n (2.7)

2

therefore by a generalization of the Rademacher theorem [19] it follows

that there exists a dense 'subset = ¢CH’ such that for fe= we have
YheH' : P(f+ech) =P(f)+eP’'(h) +r(e) in H (2.8)

where r(e)/e~+0 strongly in H with ¢ +0.

The mapping P’(.)=P’(f;.) :H’ »H 4is linear and continuous. In the
sequal we will use the concept of the so-called cénical differenti&bi-
lity of the pfojection operator. ’

‘Definition 2.1

The mapping (2.6) is conically differentiable at fe€ H’ if there exists
a continuous mapping
Q(.) : H' —+ H (2.9)

such that for' e >0, ¢ small enough

VvheH' : P(f+ch) =P(f) +eQ(h) +o(ec) in H (2.10)
wherg ﬂo(;)[[H/e-+0 with +0 uniformly on compact subsets of H'.
In order to derive the form of the mapping (2.9) we need the following

notation.

For a given element y €K we denote by CK(y) the tangent cone

Culy)={¢€H]| Fe>0 such that y+ese€K} (2:11)

In general the cone (2.11) is not c¢losed, we denote by CKZy) its
closure in H.

- /’-‘l

I".
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