Advanced Mathematics Volume 1 I

Lin Fanghua and Yang Xiaoping

Geometric Measure Theory
—An Introduction

( JU AT ) B 518 )

P Science Press International Press 1
A Beijing/New York I Boston ‘



Lin Fanghua and Yang Xiaoping

Geometric Measure Theory
—An Introduction

U AT A E 3 8

ni SCIENCE PRESS
¢ Beijing/New York

INTERNATIONAL PRESS
I Boston




Sold and distributed in the People’s Republic of
China by Science Press Beijing

Sold and distributed all over the world with the
exception of the People’s Republic of China by
International Press

Copyright (©2002 by Science Press and International Press
Published by

Science Press
16 Donghuangchenggen North Street
Beijing 100717, China

International Press

P. O. Box 2872
Cambridge, MA 02238-2872
U S A

All rights reserved. No part of this publication may be re-
produced, stored in a retrieval system,or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission

of the copyright owner.

ISBN 7-03-010271-1/0-1599(Science Press)
ISBN 1-57146-125-6 (International Press)



Series Preface

International Press and Science Press are delighted to bring our readers
our joint series of books by outstanding Chinese mathematicians. These books
will allow our readers to become acquainted with significant research by the
most renowned Chinese scholars, living within China and abroad.

The series will have world wide circulation in both the Chinese and Eng-
lish languages. It is our hope that the series will both encourage many young
scholars in China to enter the field of mathematics and also will help further
awareness in other parts of the world of important accomplishments by Chi-
nese mathematicians.

We hope that you will appreciate each of these books as much as we do.

Y. Wang and S. T. Yau

Series Editors



Introduction

Since the publication of the seminal work of H. Federer!*! which gives
a rather complete and comprehensive discussion on the subject, the geo-
metric measure theory has developed in the last three decades into an even
more cohesive body of basic knowledge with an ample structure of its own,
established strong ties with many other subject areas of mathematics and
made numerous new striking applications. The present book is intended for
the researchers in other fields of mathematics as well as graduate students
for a quick overview on the subject of the geometric measure theory with
emphases on various basic ideas, techniques and their applications in prob-
lems arising in the calculus of variations, geometrical analysis and nonlinear
partial differential equations. With this intention, the presentation and se-
lection of materials in the book are somewhat different from many other
books on the subject, excluding various closed discussions of some special
sub-topics dealing with other existing literature. Most similar to this publi-
cation is the book written by L. Simon['°!l about twenty years ago, aiming
at catering to the need of geometrical analysts, PDE specialists and others
to master the basic ideas and powerful techniques in the geometric mea-
sure theory. Unlike [101], the present text contains many more concrete
examples besides the regularity theory of minimal surfaces, illustrating how
these ideas and techniques were applied. Indeed, practically each chapter
contains such discussions with Chapter 2 in particular. Another important
distinction of the present text from [101], although the selection of materials
is quite related, is that we have tried to give more detailed expositions of
some topics that were either briefly discussed or omitted in [101]. One of
the topics we have emphasized is the fundamental notion of Rectifiability
of sets and measures. Besicovitch!?%! laid the foundations of geometric mea-
sure theory, particularly, the theory of rectifiable and purely unrectifiable
sets by describing to an amazing extent the structure of the subsets of the
plane having finite one-dimensional Hausdorff measure. Federer extended
Besicovitch's work to m-dimensional subsets of R™, with m being an inte-
ger, and Marstrand analyzed general fractals in the plane whose Hausdorff
dimensions need not be an integer and, later studied 2-dimensional sets
in R®. Mattila generalized Marstrand’s work for general m-dimensional
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sets in R™. Preiss solved one of the most long-standing fundamental open
problems which was referred to as Besicovitch-Federer’s conjecture, effec-
tively introducing and using tangent measures. It is clear that the study of
the rectifiable sets and measures is essential to the theory. Readers should
compare various ideas in establishing the rectifiability theorems. In par-
ticular, it would be interesting to compare discussions in Chapter 3 for
the general theory of rectifiable sets and that of Allard’s rectifiability the-
orem for varifolds in Chapter 6 and Ambrosio-Kirchheim’s updated proof
of Federer-Flemming’s rectifiability theorem for currents in Chapter 7. For
many detailed discussions on the rectifiability and the related topics we re-
fer to the recent beautiful treatment by P. Mattilal®. He also gives much
more detailed discussion on rectifiability of measures and Preiss’ theorem,
rectifiability and analytic capacity, rectifiability and orthogonal projection,
rectifiability and singular integrals and many other more traditional topics
in the geometric measure theory.

Other topics which have been given much more detailed expositions than
those in [101] are functions of bounded variation, sets of finite perimeter
and area and co-area formulae. The book[*”l by Evans and Gariepy is a
wonderful source for the discussions on these topics. Discussions related to
BV-functions, sets of finite perimeter and least area oriented boundaries,
etc, can be found in the book®! by E. Giusti which presents a relatively
complete account of De Giorgi’s theory and his solutions to the classical
Plateau’s problem.

One of the regrets with respect to the contents of the present text is that
it does not contain detailed discussion on fractals and fractal measures.
Fractals and fractal measures arise in many ways, for example, in number
theory via Diophantine approximation, in probability via Brownian motions
and other stochastic processes, in dynamical systems as strange attractors,
Julia-sets or some general limit sets of Kleinian groups in complex analysis,
in the study of geometry of discrete groups and in many applied analy-
ses, etc. Some discussions on them and further references can be found,
for example, in Barnsley!'?, Edgar!3®| Falconer38:3%! Mandelbrot!"® and
Peitgen and Richter®®. Mandelbrot!™! also uses fractals to model many
physical phenomena. Computer simulation of fractal images is widely con-
sidered in Peitgen and Saupel®!, and Barnsleyl. There are also many
recent interesting developments in analysis on fractals.

As mentioned above, one of the emphases of the present text is to include
many applications. It is obvious that our discussions on applications are by
no means exclusive. In fact, we have only chosen a few simple examples
to illustrate several important ideas and techniques in the geometric mea-
sure theory. We wish to draw readers’ attention to a few recent important
works whose spirits, ideas, techniques are very much related to part of our
discussions here. Among them we would like to point out

(a) L. Caffarelli’s work on the study of regularity of free boundaries as
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well as singular sets of free boundaries[%'%'”];

(b) J. Cheeger and T. Colding’s work on Riemannian manifolds with
nonnegative Ricci curvature3%;

(c) L. Simon’s work on singular sets of energy minimizing harmonic maps
or area-minimizing currents!103—109]

(d) some recent works on stationary harmonic maps(”™® Yang Mills
fields™ 71181 Seiberg-Witten’s equations'2~ 4 and Ginzburg-Landau
equations in high dimensions(76:77].

The present book does not deal with the relationships between the classi-
cal harmonic analysis and the geometric measure theory. Several interesting
works by G. David and S. Semmes, the monograph!l in particular, may
offer readers some aspects of such theory. We should point out that the
later chapters of [84] also relate the issues of this type. The recent work by
Kenig and Torol® on harmonic measures on Reifenberg flat domains gives
another fascinating application of the theory.

We now briefly describe the topics of each chapter.

In Chapter 1, we introduce one of the most important measures, the
Hausdorff measure, in the geometric measure theory along with several re-
lated notions such as the Hausdorff distance, and the Hausdorff dimensions.
Some other measures are discussed at the end of the chapter. The main aim
of this chapter is to illustrate the covering technique. By using both Vitali
and Besicovitch covering lemmas, we establish density properties of sets and
the relation between Lebesgue measure and the Hausdorff measures. Due
to concerning densities, an effort has also been made to introduce tangent
measures and to establish the Marstrand’s theorem.

The entire Chapter 2 is devoted to the applications related to the Haus-
dorff measures. We first show the Federer-Zimmer and Calderon-Zygmund’s
theorem concerning the Lebesgue points and differentiable points of Sobolev
functions. Some further discussions can be found in the books37122] We
then establish the partial regularity theorem for energy minimizing har-
monic maps into spheres. Using the Hausdorff metric, we show Blaschke’s
selection principle and Almgren’s §- regularity theorem. We then prove the
Federer’s dimension reduction principle and then explain many applications
in the studies of nodal and critical sets, homogenizations in partial differ-
ential equations, maps from Alexandroff geometry, etc. At the end of the
chapter we discuss the Reifenberg’s topological disc theorems and some re-
cent works by Kenig and Toro on Reifenberg-flat domains applying Preiss’
idea.

In Chapter 3, we study Lipschitz functions and rectifiable sets. We show
the extension theorem, differentiability theorem and C! approximation the-
orem for Lipschitz functions. A basic rectifiability theorem is established
under the assumption that there exists almost everywhere a (unique) ap-
proximate tangent space. Marstrand and Mattila’s rectifiability theorems
under the weak tangent plane properties (nonuniqueness of tangent spaces)
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are also established. An effort is also made to explain the deep theorem of
D. Preiss concerning Besicovitch-Federer’'s conjecture. We prove that
‘density one’ implies the rectifiability and develop the key structure theorem
which characterizes rectifiable sets by their projection properties.

Chapter 4 is devoted to the detailed proofs of the area and coarea formu-
lae. Some applications are discussed including the degree theory for VMO
mappings developed recently by Brezis and Nirenberg!?3.

In Chapter 5, we study the set of the finite perimeter and functions of
bounded variations. After establishing various basic facts for BV-functions
as those of Sobolev functions, we also prove the coarea formula for BV
functions. De Giorgi’s theorem concerning the set of finite perimeter is also
proved. Some further discussions are made at the end of the chapter about
the class of special BV functions.

Chapter 6 is the basic varifold theory. We first explain the idea of
the Young measures that will naturally lead to the notion of generalized
surfaces—varifolds. Then we introduce the notion of varifolds and their
first variation. The basic monotonicity lemma and isoperimetric inequality
are established for the general varifolds which have controlled the first vari-
ations. The basic rectifiability and regularity theorem of Allard are then
explained. Further discussions on these can be found in [101]. Here we
simply present Allard’s main ideas.

In Chapter 7, we discuss some fundamental results concerning integral
rectifiable currents due to Federer-Fleming, including deformation theo-
rem, compactness theorem and rectifiability theorem. The updated proofs
here are mainly taken from a recent article of Ambrosio and Kirchheim!3!.
Federer-Fleming’s proof (with some improvements) was nicely explained in
the book by L. Simon{1®!(see also [40]).

Finally in Chapter 8, we discuss existence and De Giorgi's theorem con-
cerning the regularity of area-minimizing oriented boundaries. The key
argument is how to establish the excess decay and height bound. The proof
we adopt is taken from [55]. De Giorgi’s original proof is discussed in de-
tail in the book by E. Giusti’®!l. The proof given in [55] can be viewed as

simplification from the earlier works by Almgren(®~% Schoen-Simon/®! and

Bomberil!9],

The present book is essentially self-contained. A sufficient prerequisite for
reading this book is to have some knowledge of real analysis (real-variable
and measure theory), Sobolev spaces and differential geometry.

Geometric measure theory is a hard subject. Needless to say, the present
text must contain many defects and authors’ ignorance. We simply hope
that it will provide a brief account of the theory, some basic ideas and tech-

niques for research beginners and many others interested in these subjects.

The authors
July 2001
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Chapter 1
Hausdorff Measure

Modern measure theory can go back to C. Jordan (1893) who founded
the so-called Jordan measure theory. E. Borel (1895) invented a new
method for studying measures of point sets which guaranteed the denumer-
able additivity of measures. R. Baire soon after published the first paper
of discontinuous real function theory. Largely inspired by these stimulating
work, Lebesgue (1902). who was the first to set forth systematically the
idea on measure and integration. introduced a kind of measure £L™ over R™
(Lebesgue measure) which is the generalization of length, area, volume, etc.
Caratheodory (1914) proposed to define measures by set covering. Hausdorff
(1919) adopted this idea to define fractional dimensional measure (Hausdorff
measure). lu the middle of this century., Besicovitch and his students laid
down the groundwork and a series of deep properties of Hausdorff measures.

In this chapter, we will concentrate mainly on the elementary theory of
Hausdorff measure. In the first section we briefly review some basic theory
of outer measure and define the Hausdorff measure. The second section
focuses on the proof of isodiametric inequality involving the Steiner sym-
metrization. The fact that symmetrization in coordinate directions only will
be sufficient to show such inequality is observed by L. C. Evans. The third
section includes the covering theory and densities for Hausdorff measures.
Many techniques in Geometric Measure Theory involve covering arguments.
We will illustrate this in proofs of density theorems and the theorems in
Section 2.1 later. At the end of the third section we also explain tangent
measures and prove one beautiful theorem due to Marstrand. The final
section presents some more general measures and extensions related to the
Hausdorff measure, including integral geometric measure, net measure, the
Banach Paradox, etc. Besides the Hausdorff measure. one of the most im-
portant measures in Geometric Measure Theory is probably the integral
geometric measure.
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1.1 Preliminaries, Definitions and Properties

In this section, we first quickly recall some elementary measure theory,
then give the definition of Hausdorfl measure and its fundamental proper-
ties.

Let X be a topological space. All subsets of X form a family of subsets
of X denoted by S. A collection C of subsets of X is said to be a g-algebra
if

(i)o, X ecC.

(i1) U:_i_l A; € C and ﬂzl A; € C whenever A; € C fori=1,2,3,...,

(iit) X ~ A € C whenever A € C.

Borel subsets of X are the elements of the smallest family of subsets
of X which contains the open and closed subsets of X and is closed under
the formation of countable unions and intersections. The collection B of all
Borel subsets of X is a g-algebra. Now we recall the definition of (outer)
measures.

1.1.1 Definition. Let X be a topological space. If u is a function: S —
[0,00] such that p(@) = 0 and

p(A) <Y u(4))

j=1
whenever A C U;’il A;, Aj C S, we say that u is a measure over X or a
measure in brief.

A subset A C X is called to be p-measurable if for each subset B C X,
#(B) = p(B ~ A) + u(B N A).

It is usually referred to as the Caratheodory approach or the Caratheodory
condition. It is easy to show that the subfamily of S consisting of all u-
measurable subsets is a o-algebra.

A measure p on X is called a Borel measure if each Borel set is u-
measurable. A Borel measure p is called Borel regular if for each subset
A C X there exists a Borel set B D A such that u(B) = p(A).

1.1.2 Theorem (Caratheodory Criterion). For a measure i on a
metric space X, all open sets are pu-measurable if and only if

u(AU B) > pu(A) + p(B)

whenever A C X. B C X and dist(A, B) > 0.
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Proof. The necessity is obvious. To show the sufficient part it is enough
to prove that for any subset ' C X, and each open subset O C X, there

holds
w(T) > (T ~ O)+ p(T 1 0)

whenever p(T) < oo. In fact, set TN O = C and
. 1
Cr,=Cn {.1‘ € X. dist(e. X ~0O) > E}
Then dist(Ci, T ~ O) > 0 and
w(T) > w(TNCr) + u(T ~ 0).
Now we claim that
klirn (T NCy) =p(TNC)=pu(TNO),
which is equivalent to limy— . u(Ci) = u(C).

Let Cy =0, R, = Cryq1 ~ C,. and employ the condition of this part to
obtain that

2
1(Cakt1) Zz (Ran).

and

M~

H(Clk) z AU(RZH-I)'

n=1

Observe that

C = Uck—02k+UR2r1+ U Ryny

n-k+1
and
Z ,U Rln ) < 0.
n=1
Z R2n+1) < H(T) ocC.
So

NgE

#(C) < u(Car) + Y j(Ran) + > p(Ranoy).

n

i
E
3
I
x
+
—

This implies that limg_, o p(Cr) = p(C) as required. 0O
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Suppose that p is a Borel regular measure on X and X ={J2, U; where
U; is open and u(U;) < oo for each ¢ = 1,2,3,.... Then we can check that

w(A) = inf__ pu(0)

O open, ODA
for each subset A C X, and

p(d)=  sup  p(C)
C closed, CCA

for each pu-measurable subset A C X.

If the topological space X is locally compact and separable, the termi-
nology that a measure p is a Radon measure means that p is Borel regular
and finite on each compact subset of X.

Let U be an open, bounded smooth subset of R*. M(U) denotes the
space of signed Radon measures on U with finite mass. Cy(U) is the space
of continuous, real-valued functions on U with compact supports.

1.1.3 Definition. A sequence {ur} 2, € M(U) is said to converge
weakly to p € M(U), denoted by pr — p weakly in M(U), if
/ fdug ~+/ fdu as k — oo for each f € Co(U).
U U

1.1.4 Theorem. Assume that py — p weakly in M(U). Then
limsup p(C) < u(C)
k— o0
for each compact set C C U and
#(0) < liminf ux (O)
k— o0
for each open set O C U.

Proof. For any € > 0, by the definition of measure, we see that there
exist a 6 > 0 and a §-neighbourhood Cj of C such that
#(Cs) < w(C) +e.
Choose f(z) = min{1, 3dist(z,U — C5)} and infer that
w(C)+e> /fdu = klim /fd;uc > limsup pe(C).
— 00

k—o0
On the other hand if m < u(0), A C O is a compact set with u(A4) > m
and § > 0 satisfies that A5 C O, we define f similarly as above to obtain

m < /fdp, = kllrr;o/fdpk < likrgicréfuk(O).

Obviously these complete the proof. [

The metrics on M{U) are very useful. We briefly recall some facts in
the aspects.
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1.1.5 Definition. By saying that a sequence of measures p, € M(U)
converges to a measure u in the Levi metric p we mean that for any e > 0,
there exists an N > 0 such that

p(ptn, 1) < € whenever n > N.

where p(u,v) < € if and only if for any § > 0. the §-neighborhood As of A,
there hold
H(A) S v(As) +e, v(A) < p(ds) +e.

1.1.6 Lemuma. The Levi metric convergence in Definition 1.1.5 is equiv-
alent to the measure's weak convergence in Definition 1.1.3.

The proof of this lemma is standard. we leave it as an exercise.

One of fundamental theorems in measure theory is the Riesz Representa-
tion Theorem for linear functionals. To recall it we assume that X is locally
compact and separable. and H is a Hilbert space with inner product (,).
L(X, H) denotes the space of all continuous functions from X to H with
compact supports. Then we have the following statement (see [101] for the
proof).

1.1.7 Theorem (Riesz Representation Theorem). Let F be any
linear functional on L(X. H) satisfying
sup{F(f) :f € L(X.H).| f|< Lisptf C C} < o0

for each compact C C X. Then there is u Radon measure i on X and a
p-measurable function v : X — H such that | v(r) |= 1 for y-a.e. x € X
and

F(hH :/X<f.l/>d,u forall f € L(X.H).

We now begin to discuss some lower dimensional measures on R™.

1.1.8 Definition. Let A C R". 0 < s < oo.

(i)For 0 < § < o0, define

X d. C 8 >
H3(A) = inf{ S a(s) (LI;J,) [Ac e, diamc; < 8,
Jj=1 j=1
where
s/2
a(s) = -5 0 <s < oo,
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o0

and T(s) =: [ e x* 'dz, 0 < s < oo, that is, [(s) is the (real) T-
function.
(ii) Define
H*(A) := lim Hi(A) = sup H§(A).
30 3>0

We call H® s-dimensional Hausdorff measure on R™.

Remark 1. For 6 > §', H{(A) < H§ (A). Hence HE(-) is a monotonously
decreasing function of § € [0, oo].

Remark 2. H} is not a Borel measure on R

Remark 3. We will occasionally make reference to s-dimensional spher-
ical measure, defined for A, s,  as above in the following way

S§(A) == inf § > a(s)ril0 < 2r; < 8, AC | Blaj,my) 3,

ji=1 =1

S*(4) := lim S3(4).

In general, H* < §° < 2°H?; however, there exist such sets A so that
they are H®-measurable in R" with 0 < H*(A4) < oo and H*(4) < S*(A).
For instance, Besicovitch constructed a set A C R? with S*(A) = 2/\/3,
H(A) = 1(see [40]).

1.1.9 Theorem. H*® is a Borel regular measure (0 < s < 00).

Proof. (i) We show that H*® is a measure. That is, for {4,}32, C R™,

() < S e
k=1 k=1

By definition, the inequality can be easily established for Hf (§ > 0). Then
we take limit 6 — 0 to arrive at the conclusion.

(ii) We prove that H*® is a Borel measure.

One has to show that if A, B C R™ with dist(A4, B) > 0, at least either
A or B is a Borel set, then

H*(AU B) = H*(A) + I[’(B).
It is easy to prove by definition that, if dist(A, B) > 34, then
H{(AUB) = Hj(A)+ Hi(B).

Then letting § — 0T, one obtains the desired result.
(iii) We show that H? is regular.



