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General Preface

During the past decades, giant needs for ever more sophisticated mathematical
models and increasingly complex and extensive computer simulations have arisen.
In this fashion, two indissociable activities, mathematical modeling and computer
simulation, have gained a major status in all aspects of science, technology, and
industry.

In order that these two sciences be éstablished on the safest possible grounds,
mathematical rigor is indispensable. For this reason, two companion sciences,
Numerical Analysis and Scientific Software, have emerged as essential steps for
validating the mathematical models and the computer simulations that are based on
them.

Numerical Analysis is here understood as the part of Mathematics that describes
and analyzes all the numerical schemes that are used on computers; its objective
consists in obtaining a clear, precise, and faithful, representation of all the
“information” contained in a mathematical model; as such, it is the natural
extension of more classical tools, such as analytic solutions, special transforms,
functional analysis, as well as stability and asymptotic analysis.

The various volumes comprising the Handbook of Numerical Analysis will
thoroughly cover all the major aspects of Numerical Analysis, by presenting
accessible and in-depth surveys, which include the most recent trends.

More precisely, the Handbook will cover the basic methods of Numerical Analysis,
gathered under the following general headings:

— Solution of Equations in R",

- Finite Difference Methods,

— Finite Element Methods,

- Techniques of Scientific Computing,

— Optimization Theory and Systeins Science.

1t will also cover the numerical solution of actual problems of contemporary interest in
Applied Mathematics, gathered under the following general headings:

- Numeyical Methods for Fluids,
—~ Numerical Methods for Solids,
— Specific Applications.

“Specific Applications” include: Meteorology, Seismology, Petroleum Mechanics,
Celestial Mechanics, elc.



vi General Preface

Each heading is covered by several articles, each of which being devoted to
a specialized, but to some extent “independent”, topic. Each article contains
a thorough description and a mathematical analysis of the various methods in
actual use, whose practical performances may be illustrated by significant numerical
examples.

Since the Handbook is basically expository in nature, only the most basic results
are usually proved in detail, while less important, or technical, results may be only
stated or commented upon (in which case specific references for their proofs are
systematically provided). In the same spirit, only a “selective” bibliography is
appended whenever the roughest counts indicate that the reference list of an article
should comprise several thousands items if it were to be exhaustive.

Volumes are numbered by capital Roman numerals (as Vol. I, Vol. II, etc),
according to their chronological appearance.

Since all the articles pertaining to a given heading may not be simultaneously
available at a given time, a given heading usually appears in more than one volume;
for instance, if articles devoted to the heading “Solution of Equations in R"” appear
in Volumes I and III, these volumes will include “Solution of Equations in R* (Part
1)” and “Solution of Equations in R" (Part 2)” in their respective titles. Naturally, all
the headings dealt with within a given volume appear in its title; for instance, the
complete title of Volume I is “Finite Difference Methods (Part 1}—Solution of
Equations in R” (Part 1)”.

Each article is subdivided into sections, which are numbered consecutively
throughout the article by Arabic numerals, as Section 1, Section 2, . . ., Section 14,
etc. Within a given section, formulas, theorems, remarks, and figures, have their own
independent numberings; for instance, within Section 14, formulas are numbered
consecutively as (14.1),(14.2), etc., theorems are numbered consecutively as Theorem
14.1, Theorem 14.2, etc. For the sake of clarity, the article is also subdivided into
chapters, numbered consecutively throughout the article by capital Roman numerals;
for instance, Chapter 1 comprises Sections 1 to 9, Chapter II comprises Sections 10
to 16, etc.

P.G. CiaRLET
J.L. Lions
May 1989
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Introduction

G.1. Marchuk

The finite difference method is a universal and efficient numerical method for solving
differential equations. Its intensive development, which began at the end of 1940s
and the beginning of 1950s, was stimulated by the need to cope with a number of
complex problems of science and technology. Powerful computers provided an
impetus of paramount importance for the development and application of the finite
difference method which in itself is sufficiently simple in utilization and can be
conveniently realized using computers of different architecture. A large number of
complicated multidimensional problems in electrodynamics, elasticity theory, fluid
mechanics, gas dynamics, theory of particle and radiation transfer, atmosphere and
ocean dynamics, and plasma physics were solved employing the finite difference
techniques.

Numerous spectacular results have been obtained in the theory of finite difference
methods during the last four decades.

In ordinary differential equations, the stability of the main classical finite
difference methods was investigated and the relevant accuracy estimates were
constructed, a large number of new versions of these methods were constructed, and
efficient algorithms were suggested for their realization in a wide field of
applications-oriented problems. The needs of electronics, kinetics, and catalysis
stimulated the development of a broad class of methods for solving stiff systems of
equations. Problems in control theory, biology, and medicine were important for the
progress in finite difference methods of solving delay ordinary differential equations.

In partial differential equations, the achievements of the finite difference method
are even more impressive. Finite difference counterparts of the main differential
operators of mathematical physics were constructed, including those with conser-
vation properties, that is, those obeying the discrete counterparts of the laws of
conservation. An elegant theory of approximation, stability, and convergence of the
finite difference method was constructed.
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4 Introduction

The efforts of the specialists in differential equations and numerical mathematics
yielded a convenient and efficient apparatus of the finite difference method,
including spectral analysis, discrete maximum principle, and energy method.
Considerable progress was achieved in the methods on a sequence of grids, including
extrapolation methods. A flood of new results in the theory of the finite element
method greatly stimulated new achievements in the theory of the finite difference
method.

An important stage in the progress of finite difference methods was the
development of the alternating direction implicit method, the fractional steps
method, and the splitting method. The realization of these methods consists in
solving a large number of one-dimensional problems. A considerable number of
versions of this class of methods have been suggested, having high approximation
accuracy and absolute stability. Numerous multidimensional problems in physics,
mechanics, and geophysical hydrodynamics have been solved using these methods.

The theory of the finite difference method is far from having been completed,
especially in the field of nonlinear partial differential equations. Life never ceases to
offer new complex problems, and the method of finite differences remains a powerful
approach to solving them.

It would be impossible in the Handbook of Numerical Analysis to cover even all the
basic achievements of the theory. Nevertheless, I do not doubt that its publication
will help making the finite difference method interesting to new people and will
attract new researchers to solving its problems.
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Preface

This article is devoted to the numerical solution of linear partial differential
equations of parabolic type by means of finite difference methods. The emphasis in
our presentation will be on concepts and basic principles of the analysis, and we shall
therefore often restrict our considerations to model problems in as much as the
choice of the parabolic equation, the regularity of its coefficients, the underlying
geometry and the boundary conditions are concerned. In the beginning of the article
proofs are provided for the principal results, but as the situation under investigation
requires more technical machinery, the analysis will become more sketchy. The
reader will then be referred to the literature quoted for fuller accounts of both results
and theoretical foundations.

The article is divided into three chapters. The first of these is of an introductory
nature and presents some of the basic problems and concepts of the theory for the
model heat equation in one space dimension. This chapter is subdivided into two
sections, devoted to the pure initial value problem and the mixed initial boundary
value problem, respectively. This division is then the basis for the plan of the rest of
the article, where Chapters IT and 111 treat these two classes of problems in greater
depth and generality. Whereas most of the theory in Chapter 11 depends on Fourier
analysis, that of Chapter III relies heavily on energy and monotonicity type
arguments.

The finite difference method for partial differential equations has a relatively short
history. After the fundamental theoretical paper by Courant, FRIEDRICHS and LEwy
[1928] on the solution of the problems of mathematical physics by means of finite
differences, the subject lay dormant till the period of, and immediately following, the
Second World War, when considerable theoretical progress was made, and large
scale practical applications became possible with the aid of computers. In this
context a major role was played by the work of von Neumann, partly reported in
.O’BriaN, HyMAN and KapLaN [1951]. For parabolic equations a highlight of the
‘early theory was the celebrated paper by Joun [1952], which had a great influence
on the subsequent research. The field then had its golden age during the 1950s and
1960s, and major contributions were given by Douglas, Kreiss, Lees, Samarskii,
Widlund and others.

At the end of this period the theory for the pure initial value problem had become
reasonably well developed and complete, and this was essentially also true for mixed
initial boundary value problems in one space dimension. For multidimensional
problems in general domains the situation was less satisfactory, partly because the
finite difference method employs the values of the solution at the points of a uniform

9



10 V. Thomée

mesh, which does not necessarily fit the domain. This led the development into
a different direction based on variational formulations of the boundary value
problems, and using piecewise polynomial approximating functions on more
flexible partitions of the domain. This approach, the finite element method, was
better suited for complex geometries and many numerical analysts (including the
author of this article) abandoned the classical finite difference method to work with
finite elements. The papers on parabolic equations using finite differences after 1970
are few, particularly in the West.

It should be said, however, that finite elements and finite differences have many
points in common, and that it may be more appropriate to think of the new
development as a continuation of the established theory rather than a break away
from it. In the Russian literature, for instance, finite element methods are often
referred to as variational difference schemes, and variational thinking was, in fact,
used already in the paper by Courant, Friedrichs and Lewy quoted above. The finite
element theory owes much of its present level of development and sophistication to
the foundation provided by the finite difference theory. However, in the present
Handbook, the two subjects are separated, and we shall only very briefly touch upon
their interrelation below.

In our presentation here we shall not discuss techniques for solving the algebraic
linear systems of equations that result from the discretization of the initial boundary
value problems, but refer to other articles of this Handbook concerning such
matters. Neither shall we treat the related area of alternating direction implicit
methods, or fractional step methods, which are designed to reduce the amount of
computation needed in multidimensional, particularly rectangular, domains, and to
which a special article of this volume is devoted.

Several textbooks exist which treat finite difference methods for parabolic
problems, and we refer, in particular, to RicHTMYER and MorTtoN [1967] and
Samarskil and GuLiN [1973] for thorough accounts of the field, but also (in
chronological order of publication) to CoLiaTz [1955], FORSYTHE and Wasow
[1960], Riasenkr and Fiippow [1960], Fox [1962], GopuNov and RYABENKI
[1964], SauLev [1964], Smith [1965], BaBuskA, PRAGER and VITASEK F1966],
MitcHELL [1969], and SaMarskii [1971]. In addition we would like to mention the
survey papers by DoucLas [1961a] and THOMEE [1969]. We have included in our
list of references a large number of original papers, not all of which are quoted in our
text. For treatises on the theory of parabolic differential equations, covering
existence, uniqueness and regularity results such as needed here, we refer to
FRrIEDMAN [1964] and LADYZENSKAJA, SOLONNIKOV and URAL'CEVA [1968].

I'would like to take this opportunity to thank Chalmers University of Technology
for granting me a reduction of my teaching load while writing this article, to
Ann-Britt Karlsson and Yumi Karlsson for typing the manuscript, and to
Mohammad Asadzadeh for proofreading the entire work.



CHAPTER |

Introduction

In this first introductory chapter our purpose is to use the simplest possible model
problems to present some basic concepts which are important for the understanding
of the formulation and analysis of finite difference methods for parabolic partial
differential equations. The chapter is subdivided into two sections corresponding to
the two basic problems discussed in the rest of this article, namely the pure initial
value problem and the mixed initial boundary value problem.

In the first section we thus consider the pure initial value problem for the heat
equation in one space dimension. We begin with the simplest example of an explicit
one-step, or two-level, finite difference approximation, discuss its stability with
respect to the maximum norm and relate its formal accuracy to its rate of
convergence to the exact solution. We also present an example of the construction of
a more accurate explicit scheme. We then introduce the application of Fourier
techniques in the analysis of both stability, now with respect to the L,-norm,
accuracy, and convergence. We finally touch upon the possibility of using more than
two time levels in our approximations.

Section 2 is devoted to the mixed initial boundary value problem for the same
basic parabolic equation, with Dirichlet type boundary conditions at the endpoints
of a finite interval in the space variable. Here we discuss the possibility and
advantage of using implicit methods, requiring the solution of a linear system of
equations at each time level. Stability and error analysis is carried out for the
simplest such methods, the backward Euler method and the more accurate
Crank-Nicolson method. Again both maximum-norm estimates based on positivity
properties of the difference scheme and I,-norm estimates derived by Fourier
analysis are treated. A brief mention is made of the possibility of extending some
initial boundary value problems to periodic pure initial value problems.

The material in this chapter is standard and we refer to the basic textbooks quoted
in our preface for further details and references.

1. The pure initial value problem

In this first section of our introduction to the solution of parabolic problems by
means of finite difference methods we shall discuss several such methods for the pure
dnitial value problem for the simple homogeneous heat equation in one space
dimension.
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We thus wish to find the solution of the pure initial value problem
2
6_u=9_1; for xeR, =20,
o ox (1.1
u(x,0)=v(x) for xeR,

where R denotes the real axis and » is a given smooth bounded function. It is well
known that this problem admits a unique solution, many properties of which may be
deduced, for instance, from the representation

1
47t

u(x, t)=

I e~ ETINENY( ) dy = (E(t)v) (x).

Here we think of the right-hand side as defining the solution operator E(t) of (1.1). In
particular, we may note that this solution operator is bounded, or, more precisely,

sup | E(t)o(x)| =sup|u(x, t}| <sup|v(x)] for t>0. (1.2)
xeR xeR xeR

For the numerical solution of the problem (1.1) by finite differences we introduce
a grid of mesh points (x, t)=(jh, nk) where h and k are mesh parameters which are
small and thought of as tending to zero, and where jand n are integers, n > 0. We then
look for an approximate solution of (1.1) at these mesh points, which will be denoted
by Uj, by solving a problem in which the derivatives in (1.1) have been replaced by
finite difference quotients. Define thus for functions defined on the grid the forward
and backward difference quotients

BUT=h"!(U3.,~ U3)
3, U=h"'(U-U1-,),

and similarly, for instance,
JUI=k~ (U —UY.

The simplest finiie difference equation corresponding to (1.1) is then

0,Ur=9,0,U% for —o<j<oo, n20,
U}=v,=0(jh) for —oo<j<oco.

This difference equation may also be written as

U|’;+1—U";= 7+1“2U7+U7_1

k h? ’
or, if we set A=k/h?,
UT* =AU, +(1 = 20U+ AT, = (E,, UM, (1.3)

where the identity defines a linear operator E,,, the local discrete solution operator.
This scheme is called explicit since it expresses the solution at t = (n + 1)k explicitly in
terms of the values at ¢ =nk. Iterating the operator we find that the solution of the



