-

-

Pamb |



[~

Lo

7

/ /,/'"/‘

Systems and Transforms
with Applications in Optics

Athanasios Papoulis

Professor of Electrical Engineering
Polytechnic Institute of Brooklyn

Robert E. Krieger Publishing Company
Malabar, Florida

2005012



Original Edition 1968
Reprint 1981, 1986

Printed and Published by

ROBERT E. KRIEGER PUBLISHING COMPANY, INC.
Krieger Drive

Malabar, Florida 32950

Copyright © 1968, by McGraw Hill Book Co., Inc.
Reprint by arrangement

All rights reserved. No part of this book may be reproduced in any
form or by any electronic or mechanical means including information
storage and retrieval systems without permission in writing from the
publisher.

Printed in the United States of America

Library of Congress Cataloging in Publication Data

Papoulis, Athanasios, 1921-
Systems and transforms with applications in optics.

Reprint. Originally published: New York: McGraw-
Hill, 1968. (McGraw-Hill series in systems science)

Bibliography: p.

1. Optics. 2. Systems analysis. 3. Transforma-
tions (Mathematics) 1. Title. II. Series: McGraw-
Hill series in systems science.

[QC383.P23 1981] 535 81-5995
ISBN 0-89874-358-3 AACR2
10987654

:ﬁ(,'



SYSTEMS AND TRANSFORMS
WITH APPLICATIONS IN OPTICS



PREFACE

In recent years, a trend has been developing toward greater interaction
between electrical engineering and optics. This is so not only because
optical devices are used extensively in signal processing, storage, pattern
recognition, and other areas, but also because the underlying theory is
closely related to the theory of systems, transforms, and stochastic
processes. In fact, whereas in system analysis the Fourier integral is
an auxiliary concept, in diffraction theory it represents a physical
quantity; whereas only a limited class of electrical signals need be treated
as stochastic processes, optical waves are inherently random. The fol-
lowing list illustrates the striking parallels between these two disciplines.

Fresnel diffraction: output of a filter with quadratic phase
Fraunhofer field: Fourier transform

Lens: linear FM generator

Focal plane field: Fourier transform

Contrast improvement: filtering
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Apodization: pulse shaping ) SO ¢ /

Coherence: autocorrelation ( o

Michelson interferometer: correlometer consisting of a delay line and an
adder

Fabry-Perot interferometer: narrow-band filter

Motivated by such observations, I decided to develop a course in the
general area of systems and optics. In the early planning stages of the
course, two approaches seemed attractive: (1) descriptive coverage of a
large number of applications, or (2) extension of signal theory to two
dimensions and space coordinates followed by analytical discussion of
selected applications. As is apparent from this book, I chose the second
approach. This choice reflects my conviction that in education the
primary objective is not the exhaustive coverage of terminal topics but
rather the systematic analysis of all steps from first principles to repre-
sentative illustrations.

The material in this book is essentially self-contained. Part 1 deals
with the general theory of systems and transforms in one and two dimen-
sions. The early notions of the one-dimensional case are covered only
lightly; greater emphasis is placed on more sophisticated concepts, some
of which are new. The two-dimensional case includes singularity func-
tions, systems, Hankel transforms viewed as Fourier transforms, sampling
expansions, asymptotic expansions, and stochastic processes. Part 2 is
devoted to optical applications related to the material in Part 1. Diffrac-
tion theory is based entirely on Kirchhoff’s formula, thin lenses are
interpreted as transparencies with quadratically varying phase, and the
study of coherence is an extension of the second-order theory of random
signals. To avoid any prerequisites from electromagnetic theory, I con-
sidered only the scalar theory of light. The required background from
the theory of stochastic processes is given in Chapter 8.

In exploring the relationship between systems and optics, I had the
following objectives in mind: To make available to our students an
important area and to present it in a language with which they are
familiar; to introduce into optics a point of view that simplifies and
unifies a number of apparently unrelated topics; and to point out certain
analogies that facilitate the transfer of knowledge from one field to the
other. As an interesting example of such analogies, I mention the pulse
compression technique used in radar. This rather recent idea is equiva-
lent to the old principle of concentration of light by a lens.

I should like to emphasize that my aim here is not to formulate a
general mathematical theory but rather to develop certain analytical
techniques and to show their relevance in a large number of applications.
For this reason, I derive various results only formally, often ignoring
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mathematical subtleties. This is apparent in the sections on singularity
functions and asymptotic expansions, and in the proofs of wvarious
theorems in Fourier analysis.

Most topies covered in the book have been treated elsewhere;
however, the approach is distinctly different. Related references are
listed in the Bibliography and in several footnotes. Any omissions are
due to my ignorance. The book ‘“Principles of Optics” by Born and
Wolf deserves special mention.

In the planning and execution of this project I enjoyed the complete
understanding of the then department head (at the Polytechnic Institute
of Brooklyn), Rudy Drenick. It is my pleasure to express to him
my appreciation. I also thank my colleagues Leonard Bergstein and
Lawrence Levey for their helpful suggestions and critical comments.

Athanasios Papoulis
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1
SYSTEMS AND TRANSFORMS
IN DIFFRACTION THEORY

In Part 1 of this book we develop the basic concepts of systems and
transforms in one variable, and we extend the investigation to two dimen-
sions. In the selection of topics we were influenced by optical appli-
cations. The treatment is self-contained; however, the emphasis is
placed not on detailed discussion of early concepts, but on an inte-
grated development of a variety of applications, some of them new.
Some familiarity with the elementary theory of one-dimensional systems
and transforms is, therefore, desirable.

In the first chapter, we outline certain areas of opties in which the
notions of systems, Fourier transforms, and stochastic signals are used
extensively. Since this material is included mainly for motivation, most
theorems are presented briefly, often without proof., All results of this
chapter will be reestablished in Part 2.




2 SYSTEMS AND TRANSFORMS IN DIFFRACTION THEORY

1. FOURIER TRANSFORMS IN OPTICS
Consider a monochromatic plane wave
v(z,y,2t) = flzy)e o (1-1)

propagating in the z direction with velocitytc. If an opaque screen with
an aperture S is placed on the z = 0 plane (Fig. 1-1), then from geo-
metric optics one would deduce that the space z > 0 is divided into a
“visible” cylindrical region, where the field is given by (1-1), and a ‘‘dark”
region, where the field is zero. This notion of a beam of light is an
approximation that is valid only near the aperture, and the object of
diffraction theory is to determine more accurately the diffracted field

v(z,y,2t) = g(x,y,2)e 7 1-2)

at large distances.{ It can be shown that the field g(z.,¥.,2,) at a point
P:(%0,40,2,) of the right space is given by

9(ToYor20) = A / f flxy)e* dedy k= % (1-3)
S

where f(x,y) is the function in (1-1) specifying the incident wave v, and
r=@—2)+ @ — ) + 2 (1-4)

is the distance from P to the point of integration (z,y,0). The coefficient
A is a slowly varying function of the coordinates of P. At the end of the

t The boldface letter ¢ will be used to denote the velocity of light.
i A. Marechal and M. Francon, “Diffraction,” Paris, 1960.

r = PE =r—layx + fy)
ayx +Boy = 08
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section we trace briefly the steps from first principles to the approximate
relationship (1-3).

FRAUNHOFER APPROXIMATION

With 7, the distance from the origin to the point P and

a, = To Bo T
the directional cosines of the line OP, we see from Fig. 1-1 that if r, is
large compared with the dimensions of S [see (1-17)], then

re~ 71, — (ao + BoY) (1-5)
and (1-3) yields
9(Zo,Yor20) = Aen /f f@y)e estiv) do dy (1-6)
s

This result can be expressed in terms of the two-dimensional Fourier
transform

Fwo) = [[ f@yesor dz dy (1-7)

of the function f(z,y). Since f(z,y) = 0 for (z,y) not in S, (1-6) takes
the form

9(%o)Yor20) = AerF (kaokBo) (1-8)

Thus, on the surface of a sphere centered at the origin, the amplitudet
of the diffraction field is proportional to the Fourier transform of the
aperture function f(z,y).

On the plane z = 2, this is not the case because 7, is no longer
constant. However, in a small-angle region a, = z,/7, 2 %o/2,,
Bo = Yo/To ™ Y,/2,, and

k
AF (’° _%)
2o 20
Example 1-1 From (1-9) it follows that if § is a square with sides 2a and 2b, and

f(z,y) = 1, then [see Chap. 3, (4-30)]

_ |44 sin (kaz,/2,) sin (kby,/z,)
l9(eryorze)| = (kzo/20) (kyal7o)

(1-9)

9o, ¥0r20)| =

(1-10)

1 In the following, the term amplitude will mean the function g(z,y,z) in (1-2) (the
expression complez amplitude is also used). The quantity |g|? will be referred to as the
intensity of v. ’

2005012
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Hankel transforms
We now assume that S is a circle and f(z,y) has circular symmetry:

f@y) =f0)  r=~vV2+ ¢’
It can be shown that [see Chap. 5, (1-4)] in this case, F(u,v) also has
circular symmetry, that is,

F(u,») = F(w) w=Vu?+v?

and it is given by
F(w) = 2r ﬁ) rf (1) o(wr) dr (1-11)

where J,(z) is the Bessel function of order zero, and a is the radius of S.
The function f(w) = F(w)/2r is the Hankel transform of f(r). Thus
[see (1-8)],

2 1 2
9(Xo,Yo,2) = Ae*rF (k l/-x-ﬂ) (1-12)

2o

Example 1-2 If the incident wave is uniform, then f(r) = 1; hence [see Chap. 5,
(1-20)],

2raJ 1 (aw)
w

F(w) = 2» /: rd(rw) dr =

where J1(x) is the Bessel function of order one. Inserting into (1-12), we obtain the
familiar Airy pattern (Fig. 1-2).

P= on*}'o

eIt 3.832,) <
2ma /

-—>2a

2o

Fig. 1-2
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Tkz“”I 7 2 o

N el Ol R

s 2 0% (7o > Plao. )
5 =

% / (6)

Fig. 1-3

One-dimensional transforms

The Fraunhofer diffraction reduces to the one-dimensional Fourier trans-
form in the following two cases.

Slit apertures If the aperture S is a narrow slit along the z axis of length
2a (Fig. 1-3a), then, with

J(@) = fz,0)

the incoming wave along the slit and

F(u) = [jaf(x)e‘f“’ dx

its Fourier transform, the diffraction field is proportional to F(ka,) on
the surface of a sphere of radius r, > a.

Two-dimensional signals We now assume that the incoming wave is
independent, of y, that is,

fzy) = 1)

and that the aperture S is an infinite strip along the y axis of width 2a (Fig.
1-3b). We can no longer use (1-3) to determine the resulting diffraction
field because this formula is based on the assumption that the dimensions
of S are small compared with 7,. In our case, the field g(z,2) is independ-
ent of y and it can be determined from the two-dimensional analog of
(1-3). With

b= VG T (1-13)

the distance from the point P to the point (z,0), it can be shown, as in
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(1-3), that

9oz = B [* f@)em dz (1-14)
Introducing the approximation

P P — Qo pu=\/~m ao::;_:
we conclude from (1-14) that

9@020) = Beror [ f(x)eses dz = BewoF (ko) (1-15)

Thus, on the surface of a cylinder, g(z,,2,) is proportional to the Fourier
transform of f(z).

Example 1-3 If the incoming wave is uniform, then f(z) = 1, and (1-15) yields

_ | 2B sin (kaz./z,)
lp(zaz)] = | 2EE (Ee/ee)

Commendts
1. If the aperture S is covered with a thin film, then the far field is again
given by (1-6), provided that f(z,y) is replaced by the product
fz,y)T(zy)

where T'(z,y) is the transmission function characteristic of the film.
2. It can be shown that if a self-luminous two-dimensional object is placed
on the z = 0 plane and its amplitude (surface source density) equals

[z, y)e—sot

then the resulting far field is proportional to F(ka,,kB.), as in (1-8).
3. As we see from the first two examples, the far field takes significant
values only in the cone

2 2
V' + yo < A (1-16)
2o a
where X = 2r¢/w is the wavelength of the incoming signal, and a is the
radius of the smallest circle enclosing § (Fig. 1-4). The above somewhat

arbitrary condition gives only the order of magnitude of the angle of the
‘““visible cone.”” Thus, if

a=10"%m and A=6X10"m

then this angle is about 2 minutes. In general, there is no simple rela-
tionship between the extent of a function and its Fourier transform.
However, from the uncertainty principle (Chap. 6, Seec. 3) it follows that
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Fig. 1-4

the visible region contains in any case the cone (1-16), and if f(x,y) varies
rapidly, it might be considerably broader.

4. It can be shown (Chap. 9, Sec. 3) that the error in (1-6) due to the
approximation (1-5) is negligible for

100aq?
A

2, > (1-17)

Thus, if
a=10"%m and A=5X10"m
then the Fraunhofer approximation certainly holds for z, > 200 m.

KIRCHHOFF'S FORMULA AND KIRCHHOFF’'S APPROXIMATION
We shall now justify the diffraction integrals (1-3) and (1-14). Suppose
that a function g(z,y,2) satisfies the homogeneous wave equation
9? 92 a2
99, 99 99

T T T kg =0 (1-18)

everywhere in the regionz > 0. It can be shown that if z, > 0, then with
r as in (1-4),

1 g a [e*\  e* 9y y
g(xo;yo;ZO) - 4_1r [_[ [g‘gz“( r ) T :9;] d:l: d!/ (1"19)

(provided that ¢ satisfies certain general conditions at infinity). This
remarkable formula, expressing g(z,,¥.,2,) in terms of ¢ and its normal
derivative dg/dz on the plane z = 0, shows that all information needed
to determine the propagation of an optical wave is contained on a plane
separating the sources from the point of observation. It is a special case
of Kirchhoff’s formula, which is discussed in Chap. 9, Sec. 1.
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To apply the above to the diffraction problem, we observe that since
there are no sources in the region z > 0, the diffracted field (1-2) satisfies
the wave equation (1-18); hence, it is given by the integral (1-19). The
boundary values ¢ and d¢g/dz are, of course, not known; therefore (1-19)
cannot be used directly. However, for optical signals, it is reasonable to
assume that at the opening S of the screen, the perturbed field » equals
the incident field v* [see (1-1)], that is,

0@y =J@y) L @y0) =K@y @y ES (120

and at the dark side of the screen it equals zero. Inserting into (1-19),
we thus conclude that

9 (ToyYor2a) = 4—11r / / f(x,y)e:*f[( = +]k) g: ]k] dedy  (1-21)
S

r

If we assume that z, is large compared with the dimensions of S, then the
terms in the bracket can be approximated by constants

ar 2o 2o
rT, =Vt Yl et = o~ — -

0z r To

and with

_ 1 /1 gk\z gk} __  Jk(l + 2/10)
1= [( E) ", ;:] SR = (1-22)

(1-3) follows. The last approximation resulted because r, is large com-
pared with the wavelength A = 27 /k.
For two-dimensional signals, (1-19) reduces to [see Chap. 9, (1-17)]

efr/4 © a eike eikP ag
0yRe) = —F5—— -— | —= —_———= -2
9(z02) /8 /—°° [g 9z (\/7»> Vo ‘92] & (1-29)

Introducing Kirchhoff’s approximation, we obtain, as in (1-21),

7k

9(Zo20) = it / flz)eie [( 2\1/;3_3 + \/_> 3 \/p] dx

(1-24)

If 2,>> a, then the bracket is approximately constant, and with

A R S ;_Jk]Ne"" <1+z_»)
VErk | \2Ved Vo) Po Vel 2VNpo Po
(1-25)
(1-14) follows.



