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Preface to the
Second Edition

One of the cherished dreams of mankind is to be able to relive one’s
life, to have a second chance. Such a Faustian experience is granted
to a few lucky souls, among whom are the authors of second editions.
Given the chance to “do it over again,” some bold persons would live
an entirely different life, but most would probably try to keep the
best of the old, risking the new and unknown only when the venture
stood a good chance of producing an improvement.

This is what I have done. I still believe there is a need for a simple
book on statistics for the working chemist, hence the purpose of the
book (as set forth in the preface to the first edition) has remained the
same.

In this edition, major changes have been made in every chapter
except Chapter 1, and a chapter on control charts has been added.

Many of these changes were the result of letters received from
readers of the first edition. I am very grateful to these people (most
of them chemists) for their ideas and suggestions. I hope I have
answered their questions and have in this way made this a more
useful book.
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Preface to the
First Edition

This book has been written for chemists who perform experiments,
make measurements, and interpret data. Conversations with my
colleagues have convinced me that too few chemists are taking
advantage of the help statistical tools can give them: (1) maximum
economy in experimentation, (2) maximum information from
measurement data, (3) maximum accuracy and precision from test
results. There seems to be a feeling that statistics are either too com-
plicated to learn or too time consuming to use. My purpose has been
to provide techniques which are both simple and fast and which will
enable the chemist to analyze his own data.

The book is intentionally elementary in content and method.
It is not meant to be a complete text on statistical techniques, but
rather a manual for the working chemist. Throughout the book, use
is made of rapid methods of calculation requiring only addition,
subtraction, and the ability to use a slide rule. Discussions of
statistical theory have been kept to a minimum because I believe
many chemists are awed by a page of integrations, just as many
mathematicians are abashed by a page of structural formulas.

In order to keep the manual simple and understandable to the
neophyte, it was necessary to omit some very useful but sophisticated
techniques. It is my hope that this manual will serve as a statistical
primer; having mastered the fundamentals, the reader will be
prepared to graduate to the more complex techniques as the need
arises. At the end of each chapter the reader will find references, some
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xii Preface to the First Edition

of which are not cited in the text. These were included as a suggested
step for further study.

I am grateful to Professor E. S. Pearson and Biometrika Trustees
for permission to publish certain tables which appear in the
Appendix.

I am also grateful to my secretary, Miss Pat Ibarreche, who so
unflinchingly undertook the task of transcribing my original notes;
to the Winthrop Laboratories’ Librarian, Miss Ethel Center, for her
tireless forages into the jungle of statistical literature for obscure
references; and to Helen, my wife, for typing the manuscript, and for
her criticism and coffee—both hot, strong, black, and without sugar.



List of Symbols

The reader often finds the terminology of a strange subject some-
what confusing. This is particularly true of statistical terminology
where various authors use different symbols. The following glossary
lists and defines the symbols used in this book, except in Chapter 6
which uses control chart symbols.

SYMBOL

a
A

AD

a (alpha)
B (beta)
b

€1y €3
CL

d

af

f

F

1

k

DEFINITION

The intercept of a regression line

A factor that, when multiplied by the range, gives the confidence
limits of the average

Average deviation

The risk of making a Type-I error
The risk of making a Type-II error
The slope of a regression line

Factors convert range to an unbiased estimate of the square root
of the variance

Confidence Limits of an average

A factor that converts average range to standard deviation
Degrees of freedom

Equivalent degrees of freedom

The critical value of the variance ratio test

A factor that when multiplied by the range gives the tolerance
intervals of individual measurements

The number of groups in a series of observations
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Xiv List of Symbols

SYMBOL

s
Sa
Sx
& (sigma)
(1)

~

e Lo Eo T Sl v

DEFINITION

The critical value for the one-sample substitute ¢ test based on
range

The critical value for the two-sample substitute ¢ test based on
range

The true mean of the population

Sample size or the number of observations in a group

kn—the total number of observations

The fraction defective of an acceptable lot

The fraction defective of an unacceptable lot

The critical value for the Studentized range

The range—the difference between the largest and the smallest
of a group of observations

The average range

The standard deviation of a sample

The standard deviation of a difference

The standard deviation of an average = s/./n

The standard deviation of the population

Variance of the population

Summation

The critical value of the ¢ test

The variance of a sample

An abservation, and the independent variable in a regression

The average of a number of observations

The grand average

The dependent variable in a regression
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1

Fundamentals

1.1 INTRODUCTION

We use numbers in two ways—to enumerate objects and to
designate the magnitude of measurements. If we were to count the
number of words in the first sentence, we would find there are
sixteen. No matter who counted them, when they were counted, or
how they were counted, we would still get exactly sixteen words,
This is an example of numbers used to enumerate objects. It is an
absolute value—it does not change with time or method of
measurement.

As a rule, chemists are not as interested in enumeration data as
they are in measurement data. The information important to the
chemist comes not from counting objects, but from weighing, reading
burets, measuring volumes, and reading instruments. All of these
operations involve measurements, and all measurements involve a
region of uncertainty.

For example, consider the results obtained in reading the absorp-
tivity of a spectrophotometric analysis. It is standard technique to
make readings at about 0.43 absorbence to achieve minimum error.
In this region, the absorbency scale of a well-known spectrophotom-
eter is graduated so that there are 0.01 units between scale markings.
The analyst must interpolate between 0.43 and 0.44, and the best he
can hope to do is estimate one tenth of the least count of the instru-
ment, or 0.001 units. This introduces a doubtful value into each
reading. For instance, if the true absorbence of a solution is 0.435,
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2 Fundamentaly

and he reads the instrument scale as 0.436, he is making a relative
error of 0.23%; if he reads 0.433 or 0.437, the relative error is 0.46 9.

1.2 EXPERIMENTAL ERROR

Texts on analytic chemistry classify errors as determinate and
indeterminate. Determinate errors are defined as those that can be
avoided once they are recognized. This type of error is caused by
such factors as:

(1) Improper calibration of glassware or instruments, or im-
proper standardization of reagents.

(2) Personal errors, such as the tendency of an analyst to mis-
judge a color change.

(3) Prejudice.

(4) A constant error in method.

Determinate errors introduce a bias into the measurements. For
example, if the analyst stands to one side of the hairline on the scale,
his readings will all be high or low because of parallax.

Indeterminate errors cannot be eliminated. They exist by the very
nature of measurement data. For example, the slight errors in
interpolation are indeterminate. The analyst does not know their
magnitude, or whether they are positive or negative. It is these
indeterminate errors which we call “‘experimental error.” They affect
the precision of all chemical work, and we attempt to contain them
in as narrow a zone as possible.

The most common way to minimize experimental error is to make
a series of measurements on the same object and report the average.

1.3 THE AVERAGE

The average is the sum of the measurements divided by the number
of measurements:

A—,=(X1+X2+X3 +"'+X,,)'/n. (l.l)



1.4 The Normal Distribution 3

Two facts are evident from Eq. (1.1):

(1) The average is a measure of the central tendency; the sum of
the deviations from it is zero.

(2) Since it comprises a number of different observations, it
cannot be an absolute value.

The reliability of the average depends upon the range of values
from which we obtain it: 16 is the average of 0 and 32; it is also the
average of 15 and 17. As the average of 0 and 32 we could put little
or no reliance upon its validity. As the average of 15 and 17, we can
be reasonably certain that it is a good estimate of a true value. In
neither case, can we feel as certain of the validity of the average as
we can that there are sixteen words in the first sentence of this
chapter.

When a chemist calculates an average, he is using statistics. He is
intuitively making use of the laws of probability by taking advantage
of the fact that he will make small errors more frequently than he
will make large errors, and that in the long run, the plus-and-minus
errors will cancel each other, leaving the average as a good estimate
of the true value.

A rigorous definition of mathematical probability that would
satisfy all statisticians would be too difficult and involved for this
book. For our purpose, it is sufficient to describe, rather than define,
it. Mathematical probability may be described as expected frequency
in the long run.

To the statistician, the ‘“long run” means a large number of data,
variously distributed.

1.4 THE NORMAL DISTRIBUTION

Suppose the analyst makes a very large number of absorbence
measurements (say 1000) on the same solution, and plots the magni-
tude of the measurement against the frequency of its occurrence.
He would find the measurements distributed in a bell-shaped manner,
with most of the measurements in the center and an equal number



4 Fundamentals

distributed with decreasing frequency on either side of the center.
The distribution of such data can be described by a curve like Fig. 1.1,
curve a. This is the Gaussian, or normal distribution curve. It is the
theoretical distribution of the relative frequency of a large number
of observations made on the same object. It is, therefore, a descrip-
tion of the expected frequency (or probability).

H

L L-m__ 959, ﬁ___»J
997 %

|

Figure 1.1. Curve a (——): Normal distribution curve. Curve b =--)
Student distribution curve.

The curve has two properties that make it valuable to anyone
using statistics:

(1) 1tcan be completely described by the average (u), which fixes
the location of the center of the curve with reference to the x axis,
and by the standard deviation (¢), which describes the spread of the
data along the x axis.

o = [Z(X — p)*/n]*/2. (1.2)

(2) The distribution of the frequency of the data has been
thoroughly established. For example, 95 % of the individual measure-




1.5 The t Distribution 5

ments will lie within u — 1.966 and u + 1.965, and a spread of
i t 3o will include 99.7 % of the measurements.

This means that the analyst who is making 1000 absorbence
readings would expect 50 readings to be outside u + 1.965 and only
3 readings to be outside the limits 4 + 3o.

From a practical viewpoint, the converse is important. Suppose
the analyst is making readings of a solution whose absorbence is
0.435, and he knows ¢ = 0.005. A reading outside of the range
0.425-0.445 would happen only 5 times in 100, and hence must be
suspect. This concept is the basis of tests of significance.

1.5 THE ¢ DISTRIBUTION

The theory of the normal distribution was developed from large
amounts of data, and does not necessarily apply to small numbers of
observations. In the laboratory, we cannot afford to make a very
large number of observations; as a result, statistical tests based on
the normal distribution could lead the laboratory worker to draw
false conclusions. This fact was recognized by W. S. Gosset, an Irish
chemist. In 1908, he published a paper under the pseudonym,
“Student” entitled “The Probable Error of a Mean” (I). Partly by
means of theoretical considerations, and partly by drawing small
random samples, he derived the theoretical distribution of the
average of small samples drawn from a normal distribution.

If we do not use large samples, we cannot know the true standard
deviation o or the true population mean y. However, we can replace
¢ by the sample standard deviation (s). When we do this, we must
use a new distribution, which is independent of ¢. This is the concept
introduced by Gosset that has become known as “Student’s ¢’

t= (X — p)sx. (1.3)

Student demonstrated that the distribution of # is dependent only
on the sample size (n). Figure 1.1, curve b (dashed line), shows the
relationship of the ¢ distribution to the normal distribution. The ¢
curve is flatter than the normal curve, but approaches it as the sample
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size increases, becoming equal to the normal curve as n approaches
infinity. For practical purposes, we usually use the normal distribu-
tion for sample sizes greater than 30.

It is necessary to understand the concept of the ¢ distribution
because it is the foundation upon which all tests of significance
involving the comparison of two averages from small samples are
based.

1.6 ACCURACY AND PRECISION

Accuracy may be defined as the correctness of a measurement. if
1 = the true value,
= the value obtained experimentally,

E = theerror,
then
u=X+E.

In chemical work, u is often unknown, and therefore must be
estimated from X + E. If E is zero, u = X, and the measurement is
accurate.

Precision is a measure of the reproducibility of the measurements.
The terms “accuracy’” and “precision” are sometimes used inter-
changeably, They are not necessarily synonymous, as Fig. 1.2

SRS
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1.7 The Average Deviation 7

demonstrates. A hunter fired both barrels of a shotgun at a duck,
with the results illustrated. Both barrels shot precisely, but the aim
was not accurate—the duck flew away.

The true value is pu, the duck. The averages of the bursts with
maximum distribution D are X, and X,, a measure of the precision.
The distance from X, or X, to u, is E, a measure of the accuracy.
It is only when E is small compared with D that accuracy and
precision are the same.

If D were 10 ft, the hunter would miss the duck by £ — D/2 = 5ft.
If, however, E were 5 ft, he would have a duck dinner.

Most statistical techniques measure precision rather than accuracy.
However, statistical techniques are essential to the measurement of
accuracy, because precision must be known before accuracy can be
evaluated. A chemist cannot say a method is ““accurate within the
limits of experimental error” if he has no knowledge of the magni-
tude of the experimental error.

There are three common ways of evaluating the precision: (i) the
average deviation, (i{) the variance, (i) the range.

1.7 THE AVERAGE DEVIATION
If we sum all the X’s in Fig. 1.3, regardless of whether they are
X

o]

x X X X

Figure 1.3

positive or negative, we will obtain the total deviation. Dividing this
by the number of deviations will give the average deviation (4 D).

AD = (X — X)/n. (1.4



