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Preface

The demands of today’s technology have resulted in the planning, design,
and realization of sophisticated systems that have become increasingly large
in scope and complex in structure. It is therefore not surprising that over the
past decade or more, many researchers have directed their attention to various
problems that arise in connection with systems of this type, which are called
large scale systems. Although it is reasonable to assume that in the near future
there will evolve a weli-defined body of knowledge on large systems, the
directions of such a discipline have not been entirely resolved at this time.
However, there are several well-established areas that have reached a reason-
able degree of maturity. One is concerned with the qualitative analysis of large
scale dynamical systems, the topic of this monograph.

There are numerous examples of large dynamical systems that provide great
challenges to engineers of all disciplines, physical scientists, life scientists,
economists, social scientists, and of course, applied mathematicians. Obvious
examples of large scale dynamical systems include electric power systems,
nuclear reactors, aerospace systems, large electric networks, economic sys-
tems, process control systems in the chemical and petroleum industries, dif-
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xii PREFACE

ferent types of societal systems, and ecological systems. Most systems of this
type have several general properties in common. They may often be viewed as
an interconnection of several subsystems. (For this reason, such systems are
often also called interconnected systems or composite systems.) In addition,
such systems are usually endowed with a complex interconnecting structure
and are frequently of high dimension.

In order that this monograph be applicable to many diverse areas and
disciplines, we have endeavored to consider several important classes of equa-
tions that can be used in the modeling of a great variety of large scale dynamical
systems. Specifically, we consider systems that may be represented by ordinary
differential equations, ordinary difference equations, stochastic differential
equations, functional differential equations, Volterra integrodifferential equa-
tions, and certain classes of partial differential equations. In addition, we
consider hybrid dynamical systems, which are appropriately modeled by a
mixture of different types of equations. Qualitative aspects of large scale
dynamical systems that we consider include Lyapunov stability (stability,
asymptotic stability, exponential stability, instability, and complete instabil-
ity), Lagrange stability (boundedness and ultimate boundedness of solutions),
estimates of trajectory behavior and trajectory bounds, input—output proper-
ties of dynamical systems (input—output stability, i.e., boundedness and con-
tinuity of the input—-output relations that characterize dynamical systems), and
questions concerning the well-posedness of large scale dynamical systems.

The qualitative analysis of large scale systems can be accomplished in a
variety of ways. We present a unified approach of analyzing such systems at
different hierarchical levels, namely, at the subsystem structure and intercon-
necting structure levels. This method of analysis offers several advantages. As
will be shown, the method of analyzing complex systems in terms of lower order
and simpler subsystems and in terms of system interconnecting structure often
makes it possible to circumvent difficulties that usually arise in the analysis of
high-dimensional systems with intricate structure. We shall also see that this
method of analysis is somewhat universal in the sense that it may be applied
toall the types of equations enumerated above. It will be seen that this approach
is especially well suited for the qualitative analysis of hybrid dynamical systems
(i.e., systems described by a mixture of different types of equations). In addi-
tion, analysis by this procedure yields trade-off information between qualitative
effects of subsystems and interconnection components. This method of analysis
also makes it possible to compensate and stabilize large systems at different
hierarchical levels, making use of local feedback techniques. Furthermore, this
method can be used as a guide in the planning of decentralized systems en-
dowed with built-in reliability (i.e., safety) features. Because of these advan-
tages, this method of analysis should be considered as being more important
than the individual results presented. Indeed, all the subsequent results should
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be viewed as models; in particular applications, one should tailor the present
method of analysis to specific problems.

This book consists of seven chapters. In the first chapter we provide an over-
view of the subject. Chapters [I-V are concerned with Lyapunov stability,
Lagrange stability, estimates of trajectory behavior and trajectory bounds,
and questions of well-posedness of large scale systems. In Chapter Il we con-
sider systems described by ordinary differential equations, in Chapter 111
systems that can be represented by ordinary difference equations and also
sampled data systems, and in Chapter 1V systems that can be modeled by
stochastic differential equations. In Chapter V we address ourselves to infinite-
dimensional systems that can be represented by differential equations defined
on Banach and Hilbert spaces. Such systems include those that can appro-
priately be described by functional differential equations, Volterra integro-
differential equations, certain classes of partial differential equations, and
infinite-dimensional hybrid systems described by a mixture of equations.
Chapters VI and VII are devoted to input—output stability properties of large
scale dynamical systems. The results in Chapter VI are rather general, while
Chapter VII is confined to systems described by integrodifferential equations.

To demonstrate the usefulness of the method of analysis advanced and to
point to various advantages and disadvantages, we have included several
specific examples from diverse areas, such as problems from control theory,
circuit theory, nuclear reactor dynamics, and economics. Because of their
importance in applications, we have emphasized frequency domain techniques
in several examples.

In order to make this book reasonably self-contained, we have included
necessary background material on the following topics: the principal results
from the Lyapunov stability theory (for finite-dimensional systems, infinite-
dimensional systems, and systems described by stochastic differential equa-
tions), the main results for boundedness and ultimate boundedness of solutions,
the principal comparison theorems (the comparison principle), results from
the theory of M-matrices, selected results from semigroup theory, and perti-
nent results from systems theory (relating to input—output stability). In addi-
tion, we have provided numerous references for this background material.
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CHAPTER I

Introduction

In this chapter we first discuss somewhat informally the motivation for
the method of analysis advanced in this monograph. We then briefly indicate
the type of qualitative analysis with which we concern ourselves. This is
followed by an overview of qualitative results for large scale systems which
will be of interest to us. Finally, we give an indication of the contents of the
subsequent chapters.

1.1 Introduction

In recent years many researchers have addressed themselves to various
problems concerned with large systems. This is evidenced by an increasing
number of publications in scientific journals and conference proceedings.
At this time there also have appeared a number of monographs dealing
with various aspects of large scale systems. For example, there is the funda-
mental work by Kron [1] on diakoptics, Tewarson [1] considers the theory
of sparse matrices arising naturally in large systems, Lasdon [1] addresses

1



2 I INTRODUCTION

himself to optimization theory of large systems, Mesarovi¢, Macko, and
Takahara [1] and Mesarovi¢ and Takahara [1] develop a general systems
theory for hierarchical multilevel systems, and so forth. Although the state
of the art in the area of qualitative analysis of large systems has reached a
reasonable degree of maturity, no text summarizing the important results
of this topic has appeared. We address ourselves in this book to this problem.
As was pointed out in an editorial by Bellman [4], problems associated with
large systems offer new and interesting challenges to researchers. We hope
that the present monograph will in a small way further stimulate work in
this new and exciting field.

It must be stated at the outset that no precise definition of large scale
system can be given since this term has a different meaning to different
workers. In this book we consider a dynamical system to be large if it pos-
sesses a certain degree of complexity in terms of structure and dimension-
ality. More specifically, we will be interested in dynamical systems which
may be viewed as an interconnection of several lower order subsystems.
This point of view motivates also the terms “composite system,” “inter-
connected system,” “multiloop system,” and the like. In certain applications,
the term ““decentralized system” has also been used.

Roughly speaking, problems concerned with large scale systems may
be divided into two broad areas: static problems (e.g., graph theoretic
problems, routing problems) and dynamical problems. The latter may in
turn be separated into quantitative problems (e.g., numerical solution of
equations describing large systems) and into qualitative problems. All topics
of this book are concerned with qualitative analysis of large scale dynamical
systems.

The traditional approach in systems theory is to represent systems in
certain “‘standard” or canonical forms. For example, the usual approach
in classical as well as in modern control theory is to transform the equations
describing a given system in such a fashion that the system in question may
be represented, for example, in the familiar block diagram form of Fig. 1.1.
Once this is accomplished, long-established and well-tested methods are

SYSTEM SYSTEM
u QUTPUT
INPUT COMPENSATORS }—» CONTROLLED o

PROCESS

COMPENSATORS |-

Figure 1.1 Typical feedback control system.



1.1 INTRODUCTION 3

employed to treat the problem on hand. Frequently, however, certain
complications arise with this approach. For example, often difficulties are
encountered in analysis and synthesis procedures which can be attributed
to the dimensionality and to structural complexity of a system. Another
disadvantage of the traditional approach is that after the system in question
has been cast into a standard mold (such as Fig. 1.1), the effects of individual
components, subloops, etc., are often no longer explicitly apparent because
several transformations had to be performed to put the system into a desired
canonical form (e.g., Fig. 1.1). In the subsequent chapters we will develop a
unified qualitative theory for large systems, in which the objective will
always be the same: to analyze (and synthesize) large scale systems in terms
of their lower order (and hopefully simpler) subsystems and in terms of
their interconnecting structure. In this way, complications which usually
arise in the qualitative analysis of high order systems with complex inter-
connecting structure may often be circumvented. Furthermore, such an
approach provides insight into system structure in its original form, yielding
information on effects of individual system components, subsystems or
subloops, trade-off information between various subsystems and inter-
connecting structure, and the like. This type of information is usually of
great value to the designer and to the analyst. In addition, the viewpoint
advanced herein makes it often possible to compensate large systems (i.e.,
improve their performance) at several hierarchical levels (i.e., at the sub-
system level and interconnecting structure level), using local feedback
methods. A typical large scale system, in its original form, may conceptually
be represented as shown in the block diagram of Fig. 1.2.

The method of analysis advanced herein is of course not without dis-
advantages. Thus, if a system is decomposed into too many subsystems,
one may obtain overly conservative results. However, we will demonstrate
by means of several specific examples that this need not be the case, provided
that the method is applied properly.

INPUT TO OUTPUT_OF
SUBSYSTEM S, SuBS ST SUBSYSTEM S v
i
————— ¥,
INTERCONNECTING .
STRUCTURE FOR .
SUBSYSTEM S, .
- ¥,

Figure 1.2 Typical large scale dynamical system where i= 1, ..., I



4 I INTRODUCTION

1.2 Qualitative Analysis of Dynamical Systems:
General Remarks

Qualitative aspects of dynamical systems which we will primarily address
ourselves to include the following: stability and instability in the sense of
Lyapunov; boundedness of solutions (i.e., Lagrange stability); estimates of
trajectory behavior and trajectory bounds; and input-output properties
of dynamical systems.

The direct method of Lyapunov has found a wide range of applications in
engineering and in the physical sciences. Although most of these applications
were originally concerned with the stability analysis of systems described
by ordinary differential equations (see, e.g., Hahn [1, 2], LaSalle and
Lefschetz [1], Kalman and Bertram [1]), the direct method of Lyapunov
has also been extended to systems described by difference equations (see,
e.g., Hahn [1, 2], Kalman and Bertram [2]), and more recently to systems
represented by partial differential equations (see, e.g., Zubov [1], Wang
[1, 5], Sirazetdinov [1], Chaffee [1], Hahn [2]), differential difference
equations (see, e.g., Bellman and Cooke [1], Yoshizawa [1], Krasovskii
[1], Hahn [2]), functional differential equations (see, e.g., Hale [2]
Yoshizawa [1], Krasovskii [1], Hahn [2], Halanay [1]), integrodifferential
equations (see, e.g., Driver [1], Levin [1], Miller [1], Suhadloc [1],
Bronikovski, Hall and Nohel [1]), systems of countably infinite many
ordinary differential equations (see, e.g., Bellman [1], Shaw [1]), stochastic
differential equations (see, e.g., Kushner [1], Arnold [1], Kozin [1], Kats
and Krasovskii [1], Bertram and Sarachik [1]), stochastic difference
equations (see, e.g., Kushner [3]), and the like. The stability theory of
general dynamical systems is still of current interest (see, e.g., Bhatia and
Szego [1], Hale [1], Krein [1], Ladas and Lakshmikantham [1], Walter [1],
Slemrod [17).

In the case of many systems (e.g., systems exhibiting nonlinear oscillations)
it is not the Lyapunov stability or instability that is of interest. Yoshizawa
and others (see, e.g., Yoshizawa [1], Hahn [2], LaSalle and Lefschetz [1D
have extended the direct method of Lyapunov to establish conditions for
boundedness (Lagrange stability), ultimate boundedness, unboundedness,
and the like, of solutions of dynamical systems.

In practice one is not only interested in the qualitative type of information
obtainable from the Lyapunov stability and the Lagrange stability of a
dynamical system, but also in specific estimates of trajectory behavior and
trajectory bounds. A system could for example be stable or bounded and
still be completely useless because it may exhibit undesirable transient
characteristics (e.g., its solutions may exceed certain limits or specifications
imposed by the designer on the trajectory bounds). Estimates of trajectory
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behavior and trajectory bounds have been obtained using the Lyapunov-type
approach by defining stability with respect to time-varying subsets (of the
state space) which are prespecified in a given problem (this is not the case in
Lyapunov and Lagrange stability). The boundaries of these sets yield
estimates of system trajectory behavior and trajectory bounds (see, e.g.,
Matrosov [I, 2], Michel [1-3], Michel and Heinen [1-4]). This concept
includes the notions of practical stability and finite time stability (see, e.g.,
LaSalle and Lefschetz [1], Weiss and Infante [1], Michel and Porter [4]).

In a radical departure from the classical approach described thus far,
it is possible to view dynamical systems in a “black box” sense as relations
mapping system inputs into system outputs on an extended function space.
In the context of this formulation, the qualitative analysis of such systems
is accomplished in terms of system input-output properties (see, e.g.,
Sandberg [2, 8], Zames [3, 4], Willems [1], Desoer and Vidyasagar [1],
Holtzman [1]). Many important results have been obtained along these
lines and for many important problems a connection between input—output
stability and Lyapunov stability has been established.

1.3 Qualitative Analysis of Large Scale Systems:
General Remarks

Despite its elegance and generality, the usefulness of the Lyapunov
approach is severely limited when applied to problems of high dimension
and complex interconnecting structure. For this reason it is frequently
advantageous to view high order systems as being composed of several
lower order subsystems which when interconnected in an appropriate fashion,
yield the original composite or interconnected system. The stability analysis
of such systems can often then be accomplished in terms of the simpler
subsystems and in terms of the interconnecting structure of such composite
systems. In this way, complications which usually arise when the direct
method is applied to high order systems may often be avoided. This is
precisely the approach which we will employ. Indeed, since statements similar
to the above apply equally as well to problems involving Lagrange stability,
estimates of trajectory behavior and trajectory bounds, input-output
stability, and the like, throughout this book we will pursue a method of
qualitative analysis of large systems at different hierarchical levels. As will
be pointed out repeatedly, in a certain sense, the method of analysis advanced
in this book should be viewed as being more important than the individual
results presented.

There is a sizable body of literature concerned with various aspects of
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qualitative analysis of large dynamical systems. Since this subject is rather
new, and since the literature is still growing, it is difficult and quite pointless
to make an attempt at citing every reference. Indeed, if we were to list all
sources concerned with this topic, such a list would be too long and not
justified. On the other hand, if we were to confine the listings only to
immediate references used, such a list would be too short and would hardly
reflect the importance of this subject. For this reason we shall compromise
and mention only some selected results which are in the spirit of the method
of analysis proposed herein.

1. Systems Described by Ordinary Differential Equations (Lyapunov
Stability). Using vector Lyapunov functions, originally introduced by Bellman
[2], Bailey [1, 2] invoked the comparison principle (see, e.g., Walter [1])
to establish sufficient conditions for exponential stability of interconnected
systems described by nonlinear nonautonomous ordinary differential
equations with exponentially stable subsystems and with linear time-
invariant interconnecting structure. Subsequently, results for exponential
stability, uniform asymptotic stability, instability, and complete instability
of composite systems represented by nonlinear nonautonomous ordinary
differential equations with nonlinear and time varying interconnections
and with subsystems that may be exponentially stable, uniformly asymptot-
ically stable (and sometimes unstable) were obtained by Piontkovskii and
Rutkovskaya [1], Thompson [1, 2], Porter and Michel [1, 2], Michel and
Porter [3], Thompson and Koenig [1], Matrosov [1], Araki [1, 4], Araki
and Kondo [1], Michel [5-7, 9], Matzer [1], Gruji¢ and Siljak [2],
Weissenberger [1], Bose [1], Bose and Michel [1, 2], and others. In some
of these results, vector Lyapunov functions as well as scalar Lyapunov
functions consisting of a weighted sum of Lyapunov functions for the free
or isolated subsystems are employed. In addition, absolute stability results
for interconnected systems endowed with several nonlinearities were
established by several authors (see, e.g., McClamroch and Tanculescu [1],
Bose [1], Bose and Michel [1, 2], and Blight and McClamroch [1]).
Additional related Lyapunov stability results for large systems are contained
in the paper by Tokumaru, Adachi, and Amemiya [2] and in the survey
paper by Athans, Sandell, and Varaiya [1].

2. Systems Described by Difference Equations and Sampled Data Systems
(Lyapunov Stability). Sufficient conditions for uniform asymptotic stability,
exponential stability, and instability of composite systems described by
nonautonomous nonlinear difference equations were established by Araki,
Ando, and Kondo [1], Michel [5, 7], and Gruji¢ and Siljak [1, 3]. Results
for uniform asymptotic stability of sampled data composite systems (..,
hybrid finite-dimensional systems) were obtained by Michel [5, 7].
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3. Systems Described by Stochastic Differential Equations and Stochastic
Difference Equations (Lyapunov Stability). The Lyapunov stability of large
scale systems described by stochastic differential equations (Ito equations
as well as other types of stochastic differential equations) and stochastic
difference equations are treated in papers by Michel [8, 10, 11], Michel
and Rasmussen [1-3], Rasmussen and Michel [1, 3], and Rasmussen [1].
Scalar and vector Lyapunov functions are used in the analysis. In addition
to Wiener processes, disturbances modeled by Poisson step processes, jump
Markov processes, and the like, are considered. The approach in these
references is general enough to allow disturbances to enter into the subsystem
structure and into the interconnecting structure. Composite systems with
stable as well as unstable subsystems are treated. The obtained results
yield sufficient conditions for asymptotic stability with probability one and
in probability and exponential stability with probability one, in probability
and in the quadratic mean.

4. Infinite- Dimensional Systems (Lyapunov Stability). Matrosov [2]
uses vector Lyapunov functions while Michel [5, 7], Rasmussen and Michel
[2, 4], and Rasmussen [1] use scalar Lyapunov functions (consisting of a
weighted sum of Lyapunov functions for the free or isolated subsystems)
to obtain conditions for uniform asymptotic stability and exponential
stability of composite systems described by differential equations which
are defined on Hilbert and Banach spaces. These results are general enough
to allow analysis of large systems which can be represented by ordinary
differential equations, differential difference equations, functional differential
equations, integrodifferential equations, certain classes of partial differential
equations, as well as other types of evolutionary systems. In addition, these
results provide a systematic procedure for the stability analysis of hybrid
dynamical systems, i.e., dynamical systems described by a mixture of different
types of equations.

5. Lagrange Stability and Estimates of Trajectory Behavior and Trajectory
Bounds. Sufficient conditions for uniform boundedness and uniform ultimate
boundedness of solutions of interconnected systems described by ordinary
differential equations were obtained by Bose and Michel [1, 2] and Bose [1].
Estimates of trajectory behavior and trajectory bounds of composite systems
described by ordinary differential equations were established in references
by Michel [3, 4, 9], Matrosov [1, 2], and Michel and Porter [1, 2]. These
results include earlier ones for finite time stability of systems described on
product spaces (see Weiss and Infante [iDn.

6. Input-Output Stability. Conditions for the input-output stability
(input-output boundedness and continuity) for large classes of inter-
connected dynamical systems are established in Porter [1], Porter and Michel
[3-5], Tokumaru, Adachi, and Amemiya [1], Lasley and Michel [1-6],



