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PREFACE

> This ;roluue is like Volumes 1 and 4 of this series in that it is not dedi-
cctgd to any one subtopic in inorganic biochemistry.’ We have put together a
variety of topics.of current intetest. The firct chapter deals vi:t‘\'one well-
thought-out vicv of cnrboxypeptidnel, which is one of the most thoroughly
uudio_d enzymes, and yet 1ts mechanism of action is ltil/l ,controvcriinl.
Chapter 2 {s concerned mainly with other zinc proteins, and their study by
/cobnlt substitution, and Chapter 3 summarizes the recent NMR studies on
metallothionein 1igand clusters. Chapter 4 is about a very interesting iron
‘enzyme, and Chapter 5 deals with adv in Moasbauer spectr py with iron
proteins. Chapters 6, 7 and 8, and 9 deal with copper, nickel, and vanadium

biocliemistry, respectively.
Chapters 1, 2, 5, and 6 contain recent advances in topics ptcvibuuly covered
in Inorganic Biochemistry, while the other chapters are concerned with develop-
. ments in‘toptcé that have reached mejor importance more recently. v

Gunther L. Eichhorn
~ Luigi G, Marz{iili
October 1984
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1. INTRODUCTION ' .

In a variety of Zn(II)~containing metalloenzymes, the catalytically essential
metal ion in the active site is tetra-coordinate. Three of the ligands to the
metal ion are providetf by amino acid side chains in distorted tetrahedral geom-
etry with a water molecule as the fourth ligand. Chief examples of such enzymes
are carboxypeptidase A '(1-3), thermolysin (4,5), carbonic anhydrase (6,7), and
1liver alcohol dehydrogenase (8,9). The coordination enviromment of the cata- -
lyti;:llly essential Zn(II) in these enzymes has been defined through X-ray dif-
fraction atudies, and for each of these enzymes the structures of a variety of
inhibitor complexes have been determined by difference Fourier methods. A par-
ticularly noteworthy structural feature observed in most of the inhibitor com-
plexes of these metalloenzymes is that the metal-bound water molecule is dis-
placed by the inhibitor. For this reason, it is generally assumed that sub-
strates also displace the metgl-bound water molecule in the course of the
enzylpcutaly:ed‘ reaction. However, the resuilts of a variety of studies for
some time have suggested that this assumption may not be valid. In this review
we shall pay particular attention to thbie aspects of structural, spectroscopic,
and chemical studies of éatboxypaptidau A that indicate that the zinc-bound
water molecule is not displaced by substrates in ciulytically cowétent reac-
tion intermediates but rather that it has an important role in substrate
hydrolysis. We also emphasize those aspects of spectroscopic and X-ray diffrac-
tion studies that define substrate configuration and the coordination environ-
ment of the metal ion, in efforts to identify stereochemical interactions
between the substrate and active site residues that are catalytically signifi-
cant.



11, THE THREE-DIMENSIONAL STRUCTURE OF CARBOXYPEPTIDASE A
A. Active Sits Structure and Metal Ion Coordination Geometry

Clrboxyp‘pt:ldaﬂ A (CPA)* is synthesized in the mammalian pancreas as the
proteolytically inactive zymogen procarboxypeptidase A. Upon secretion into the
intestinal tract, the zymogen is converted into catalytically active forms by
the action of trypsin. Under conditions of controlled tryptic hydrolysiq in the
laboratory, at least four chromatographically separable spacies are observed,
differing in-the length of the peptide segment that is cleaved (10,11). Of
these various forms; termed a, 8, Y and §, the a- and y-forms of CPA have been
the most widely used in.chemical and structural studies. In contrast to the a-,
B-, and §-forms, apocarboxypeptidase A, cannot be fully activated with an""
(12). The molecular structure of only the a-fors has been defined through X-ray
crystallographic studies. Our review 1. consequently based primarily on the
structural, chemical, and spectroscopic studies of the a-form and of its metsl-
substituted derivatives that have provided ineight into the molecular basis of
CPA action.

Carboxypeptidase A specifically catalyzes the hydrolysis of esters and pep-
tides in which the terminal residue has a free COOH-group and a branched ali-
phatic side chain or aromatic group in an L-configuration (13,14). The catalyt-
ic action of CPA is a multi-point, cooperative process that involves fhue sep—~
ardte regions of the enzyme. These are séh-nticnlly illustrated in Figure 1.
'rhby are: (1) the hydrophobic pocket which binds the nro-ntic side chain to-
gothor with Arg-145, forming s salt-link to the terminal carboxylate group;

(11) the bond cleavage site which consists of the side chain of Glu-270 and the
active site Zn(II) to which the carbonyl oxygen of the scissile amide or ester
bond is ligated; and (i1i) amino acid side chains known as the sites of second-
ary substrate recognition that serve to assist in the binding of extended oligo-
peptide substrates and that distort the substrate in the active site for bond
cleavage. The correlated results of chemical and X-ray diffraction studies

*Abbreviations: BMBP,. (-)-2-benzyl-3-p-methoxybenzoylpropionate; Bs-, Benzoyl-;
CBZ-, carbobenzoxy-; CICPL, 3-0-(trans- chloroc!.nmnoyl)—L—S—phnylhcuu,
ML, O-(trans-cinnamoyl)-L-mandelate; , carboxypeptidase A (in this review,

" CPA designates the o-form in general); ZnCPA, native Zn(II)-contdining cuboxy-
peptidase A; correspondingly, CoCPA, NiCPA, etc., Co(II)~, Ni(Il)-, etc. sub-
stituted carboxypeptidase A; CPL, O-(trans-cinnamoyl)-L-f-phenyllactate; Dns-,
5~(N,N-dimethylamino)-naphthalene-1-sulfonyl-; EPR, electron paramagnetic reso- -
nance; HBNA, 2-0-(hippuryl)-butancate; HPLA, O-(hippuryl)-L-f-phenyllactate;
hippuryl, N-(benzoyl)-glycyl-; MNMR, nuclear magnetic resonance; fBPP,
L-B-phenylpropionate; TEPOPL, 0-3-(2,2,5,5~tetramethylpyrrolinyl-l-oxyl)-
propene-2-oyl-L-f-phenyllactate. Peptides are abbreviated as, e.g., Gly-Tyr,
glycyl-L-tyrosine; CBZ-Gly-Phe, N-(carbohmoxy)—gly-l.whmyhlmm etc.




{a) Binding Sites {b) Catalytic Site

Fig. 1. Schematic illustration cof the active site uf CPA. 1n Part (a) the
binding interactions of an cligopeptide substrate are illustrated while in Part
(b) the molecular and electrcnic interactions required for bond cleavage in the
active site are illustrated. The active site is comprised of five subsites §)
to S; and §'; (15,16). and the catalytic site is des gnated by the arrow. Fach
subsite accommodates one amino acid residue and the positions P are counted from
the site of cleavage.

leading to the identification of these three regions of the active site have
been reviewed previously by Lipscomb and co-workers (1,2). Therefore, we shall
direct our discussion only to those aspects of high resolution studies (3,17,18)
that have further clarified the description of the active site environment of
the metal ion and the structural basis of CPA action.

The polypeptide chain of the o-form of CPS with 307 amino acid residues
described through X;ray crystallographic studies at 1.54 X resolution is com-
prised of eight segments of a-helix ranging from 8-22 amino acid residues in
length, eight regions of f-pleated sheet ranging from 3 to 8 residues in length,
and 20 reverse B-turns (17). Thirty-seven percent of the amino acid residues
are in oa-helical conformation, sixteen percent in B-sheet, and forty-seven per-
cent In random coil. Two aspects of the secondary structure may be of im-
portance in the catalytic function of the erizyme: (1) the random coil structure
is localized primarily within a region in which conformational changes are ob-
served upon binding of inhibitors, and (ii) a groove near the active site is
iined on one side by chains of B-sheet structure. The amino acid side chains in
this region probably influence the binding of distal portions of an oligopeptide
substrate that extend beyond the neighborhood of the Zn(II) when the COOH-

terminus is bound at the P‘1 site since this groove contains many of the resi-



TABLE I
SUMMARY OF ZINC~LIGAND BOND ANGLES AND BOND DISTANCES IN CARBCXYPEFTIDASE A

inc~ligand bond angle;a'b Zinc-ligand bond distances”
Ligand Distance,

N:1(69)-Zn=Ng1(196) 99°
N.1(69)-Zn=0 (72) 108° Ne1(69) 2.10
& (69)-Zn-0(H0) 116° N¢ 1(196) 2.08
N1 (196)-20-0¢ (72) 128° 0:31(72) 2.23
N.-1(196)-2n-0{H,0) 99° 0¢2(72) 2.33
CLRNM=-Zn=0¢ (72 ’ 107¢ Hy0 1.96

“The bond angles at 1,54 & resolution involving Glu-72 are determined by com-
biring the two carboxylate oxygens into a hypothetical atom 0¢, placed midway
totween the two oxygen atoms

Ref, 17.

“Ref. 3.

dues responsible for the go-called secondary interactions of substrate recogni-
tion. Also, six amino acid residues Ser-197 and Tyr-198, Pro-205, Tyr-206, and
Arg-272, and Asp-273 form cis peptide bonds and are located near this groove (3).

In the bond ‘cleavage site, the Zn(1I) is coordinated to the side chald resi-
dues of His-69, His-196, and Glu-72 in a distcrted tetrahedral configuration
with a water molecule as a nonprotein ligand. Table I providés a listing of
valence angles and bond distances calculated from refined X-ray data. Figure 2
illustrates the cnvironment of the active site metal icn. Recent interpreta-
tions of.the electron density map calculated ,on the basis of high resolution,
refined data have introduced a change in the assignment of the configuration of
donor-ligand atoms to the metal ion from that of previous etudies. Originally
Lipscomb and co-workers (1,2) assigned only ome oxygen to the carboxylate group
of Glu-72 as a donor~ligand atom on the basis of the electron density map calcu~
lated at 2.0 X resolution by the multiple isomorphous replacement u;hod {19).
In more regcent studies, this ma.p, after appltca:ion of the real space refinement
method of Diamond (20,21) provided the starting model for refinemert by the con~
strained, least-squares method of Konnert and Hendrickson (22,23), producing an
electron density map at 1.75 & resolution (3). At this higher resolution, the
improved map shows that the carboxylate oxygens of Glu-72 are nearly equidistant
from the metal ion.

The X-ray data reveal unambiguously that tnere is only one water molecule
within the inner coordination shell of the metal ion. The electron density fea-

tures and temperature factors of the residues in the active site of the native



