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1 Equations for Momentum, Heat and Mass Transport, and Mass Conversion
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sity of component A
molecular mol flux den-
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Sc=v/D “molecular” Schmidt
number
Se.=¢./¢, “turbulent” Schmidt
number
B.d
Sh, = o local Sherwood number
W, = dp_/zdz local friction coefficient
ow/2

1.1 Introduction

Microbial technical processes are carried
out in bioreactors. The bioreactor ist the
containment for an almost unlimited num-
ber of microorganisms, each microorganism
being a microreactor actually accomplish-
ing the desired mass conversion. The contri-
bution of an individual microorganism to
the mass conversion is extremely small.
Large-scale mass conversion technologies
require a countless number of microorgan-
isms, which must be contained within the
smallest possible space.

Each one of the exceedingly large num-
ber of microorganisms has to be supplied
with various nutrients, while at the same
time conversion products have to be re-
moved. Supply and removal are transport
processes. For the prevailing conditions
mass transport and mass conversion are
closely linked with transport of heat and
transport of momentum.

Transport of momentum, heat, and mass
in bioreactors are processes with much
greater consequences than in conventional
chemical reactors. Insufficient transport of
reactants results in substantially decreased
production rates when non-microbial proc-
esses are considered. In the case of micro-
bial processes the consequence of an ineffi-
cient mass transport process may be not
only a reduced production rate but may re-
sult in an altogether different type of con-
version process and conversion product.

1.2 Momentum Transport 5

This kind of response of an organism to
malfunctions or irregularities of transport
processes is one of the most fascinating as-
pects of the “individuality” of microorgan-
isms. Unfortunately we do not yet know
enough about the processes involved.

The less we know about the individual
response of a microOrganism to transport
deficiencies the more we have to make sure
that such deficiencies are avoided. A thor-
ough understanding of transport processes
will be helpful in the design and operation
of efficient bioreactors.

Transport of momentum, heat, and mass
may be achieved by conductive and convec-
tive processes. Conductive processes are
due to molecular and turbulent motions,
while convective transport is related to fluid
motion. The basic equations for momen-
tum, heat, and mass transport are empiri-
cally derived. There are no strictly theoreti-
cal equations available. The same is true for
mass conversion processes. All equations
describing chemical or biochemical conver-
sion processes are founded upon empirical
data.

The equations which will be given for
transport and conversion processes, repre-
sent physical or physico-chemical laws gov-
erning the behavior of solids and fluids;
they include parameters specific for the
considered processes and for the particular
equipment, in which the processes are car-
ried out. This chapter is therefore devoted
to a discussion of the available empirical
equations describing transport of momen-
tum, heat, and mass and the conversion of
mass. '

1.2 Momentum Transport

Transport of momentum is due to molec-
ular, turbulent, and convective motions. In
this order the processes of momentum
transport will be discussed. Molecular and
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turbulent momentum transport is the sub-
ject of this section. Convective transport
will be discussed in a separate section.
Momentum transport occurs only in fluids.
These fluids consist of two large groups:
Newtonian and non-Newtonian fluids.

1.2.1 Molecular Momentum
Transport in Newtonian Fluids

The majority of the conventional fluids,
especially inorganic gases and liquids as
well as organic gases, but also a great num-
ber of organic liquids are so-called New-
tonian fluids. In these fluids molecular
momentum transport is described by an em-
pirical equation presented by Newton:

(1.1)

This equation relates the molecular momen-
tum flux density 7,,, which is also known as
shear stress, with the velocity gradient
dw/dy, which is also known as shear rate.

dy (positive)
}dw (negative)

Velocity w

Positive direction
of momentum
’ { ;fransporf
i
Coordinate y

Figure 1.1. Explanation of molecular momentum
transport in fluids.

The proportionality factor 7 is the molecu-
lar transport coefficient for momentum,
better known as the dynamic viscosity of
the fluid; 7 depends on pressure and tem-
perature of the fluid. For all Newtonian

fluids the viscosity is independent of shear
stress 7, or shear rate dw/dy. According to
Eq. (1.1) even the smallest shear stress ap-
plied to Newtonian fluids will cause a fluid
motion. In the absence of a gradient of the
velocity (dw/dy=0), there is no shear
stress. Eq. (1.1) gives only one component
of the stress tensor.

In Fig. 1.1 the local velocity w is plotted
over the local coordinate y. According to
Fig. 1.1 and Eq. (1.1) the momentum flux
density 7., is assumed to be positive in the
direction of decreasing velocity.

The Newtonian equation for molecular
momentum transport may also be written in
the following way:

= —y SO (1.2)
dy

In this equation v=1$/p denotes the kine-
matic viscosity of the fluid with o as densi-
ty, and wo the momentum per unit volume
of the fluid. Eq. (1.2) presents the propor-
tionality between momentum flux density

Table 1.1. Kinematic and Dynamic Viscosity of

Selected Fluids (pressure 1 bar; temperature
300 K)

v n

in m%/s in kg/(m s)
Mercury 0.0112-10~? 151.7-10-3
Water 0.0681-10~° 85.7-10°°
Air 1.58 103 1.86-10~°
Hydrogen 11.25 .10~ 0.89.10-°

Tm and gradient of momentum per unit vol-
ume. In Table 1.1 values for the dynamic
and kinematic viscosity are given for a few
selected fluids.

There is no absolute proof for the validity
of Newton’s law. Applications of this law in
calculations for velocity fields are, however,
in excellent agreement with extrapolated
experimental results.



1.2.2 Molecular Momentum
Transport in Non-Newtonian
Fluids

1.2.2.1 Classification
of Non-Newtonian Fluids

All fluids which do not obey Newton’s
law for the shear stress 7, given by Eq.
(1.1), will be classified as non-Newtonian
fluids. For this group of fluids the viscosity
depends not only on temperature and pres-
sure but also on the shear stress 7,,, time,
elasticity, and other parameters.

Typical non-Newtonian fluids are melts
and solutions of, e.g., polymers, thick sus-
pensions, paints, many fermentation fluids,
i.e., primarily high molecular weight fluids:
Rheology, the science of properties and be-
havior of flowing substances, has not yet
been successful in presenting a shear stress
relation for all important groups of non-
Newtonian fluids. Only for certain groups
of non-Newtonians, such relations have
been developed [1.1] to [1.5]. From a scien-
tific point of view such shear stress rela-
tions are based on physical insight into the
flow behavior of these fluids. From an engi-
neering point of view these equations are
not yet very helpful in describing fluid flow
in technical equlpment For this particular
problem area engineers are still forced to
refer to extremely simple empirical shear
stress relations with a rather narrow range
of application.

There are at least two large groups of
non-Newtonian fluids:

1. viscous fluids,
2. elastic fluids.

For the group of viscous non-Newtonian
fluids the v1scosnty depends only on the
shear stress, but is independent of time:

n=f(r,) or n="f(dw/dy). (1.3)

1.2 Momentum Transport 7

For elastic non-Newtonian fluids the vis-
cosity is a function of time ¢:

n="f3(r).

This implies, that elastic fluids are sensitive
to distortion from an experienced or prefer-
red shape. These fluids remember for a cer-
tain stretch of time the shape they pre-
viously possessed. When the viscosity in-
creases with time, the behavior of the fluids
is rheopectic. Thixotropic behavior implies
decreasing viscosity with time.

A satisfactory mathematical description
of the flow of non-Newtonian fluids in
technical equipment is restricted to the
groups of viscous fluids. For this group of
fluids momentum transfer will be briefly
discussed.

(1.4)

1.2.2.2 Momentum Transport in
Viscous Non-Newtonian Fluids

According to the equations describing
flow behavior there are three groups of vis-
cous non-Newtonian fluids:

1. Pseudoplastic fluids,
2. dilatant fluids, and
3. Bingham fluids.

The discussion starts with the first two
groups of fluids. OsTWALD and DE WAELE
presented the following equation for mo-
mentum transport, known as the power law

[1.6], [1.7]:
dw\"
5)

K is the Ostwald factor, and n is the fluid
index. When n=1 the Ostwald factor X is
identical with the fluid viscosity 7, so that
Eq. (1.5) is reduced to Eq. (1.1), which has
been presented for momentum transport in
Newtonian fluids.

For n>1 Eq. (1.5) describes the behavior
of dilatant fluids, and for n<1 of pseudo-
plastic fluids. In Fig. 1.2 the shear stress/
shear rate relationship is given qualitatively

rm=K(- (1.5)
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for the three cases discussed. For Newto-
nian fluids with n=1 a linear relationship
exists, so that the viscosity is independent
of shear stress or shear rate. For dilatant
and pseudoplastic fluids a non-linear rela-
tionship exists. For dilatant fluids the vis-
cosity is reduced with increasing shear
stress, while for pseudoplastic fluids the
viscosity increases with shear stress.

Shear stress 7,

Shear rate dw/dy

Figure 1.2. Relationship between shear stress
and shear rate for Newtonian and non-Newto-
nian fluids.

According to Fig. 1.2 an infinitesimally
small shear stress wi!l set a dilatant fluid in
motion, while for pseudoplastic fluids an
infinitely large shear stress is required. This
rather unrealistic behavior is expressed by
the following relation:

dtm  _ & __iiﬁ)“"
d(dw/dy) dy '

n>1: —dw/dy-0 dr,/d(dw/dy)-0
n<l: —dw/dy~0 dr,/d(dw/dy)—

(1.6)

"In reality the flow behavior of viscous non-
Newtonian fluids asymptotically ap-
proaches that of Newtonian fluids in low
and high shear stress regions. This behavior
is discussed in Fig. 1.3. Curve a gives the
shear stress/shear rate relationship for a
pseudoplastic fluid. When this curve ap-
proaches r,,=0, it coincides at point 1 with
curve b, which represents Newtonian flow
behavior in the low shear stress region. Ex-
perimental data prove that in the high shear
stress region non-Newtonian flow behavior

will change into Newtonian behavior.
Curve a therefore ends at point 2. For
higher shear stress values the flow béhavior
follows curve ¢, approaching curve d, which
represents Newtonian flow behavior in the
high shear stress region.

' Application of the power law is limited
to the range between points 1 and 2 as given

-in Fig. 1.3. General expressions for these

limits cannot be stated. Care should be
taken in the use of Eq. (1.5).

From a physical point of view applica-
tion of the power law is limited to linear
flows. BIRD [1.8] has proven that the power
law, expressed by:

dw\?71251 dw
m=_K P 2 PERE)
i [(dy)] dy

is one component of the stress tensor for
Ostwald fluids. Application of this power
law on other than linear fluid flows requires
extreme care.

For non-Newtonian fluids a viscosity

(.7

. Ma—n can be defined as the ratio of shear

stress and shear rate. From Eq. (1.7) one
obtains:

e
dwrdy = TR IGy :

This equation shows clearly that the vis-
cosity of Ostwald fluids is a function of the

(1.8)

Shear stress T,

/
1 Range of application
for power law

Shear rate dw/dy

Figure 1.3. Shear stress/shear rate relationship
for a pseudoplastic non-Newtonian fluid accord-
ing to curve a; limiting Newtonian conditions
given by curves b and d in the low and high shear
stress region.
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Shear rate_dw/dy
Figure 1.4. Flow behavior of a Bingham fluid.

velocity gradient. The Ostwald factor X is,
however, independent of the velocity gra-
dient.

The third group of viscous non-Newto-
nian fluids are called Bingham fluids [1.9].
The flow behavior of these fluids is qualita-
tively given by curve a in Fig. 1.4 and quan-
titatively by:

dw
Tm-.fo"“f]g —-d7 .

1.9
The characteristic property of a Bingham
fluid is the yield stress 7, at dw/dy =0. The
stress that sets a Bingham fluid into motion
must exceed the yield stress. Bingham

fluids do not always show a linear relation- -

ship between 7, and dw/dy, while they do
exert a non-linear behavior -according to
curve b in the low shear stress tegion.

1.2 Momentum Transport 9

1.2.3 Turbulent Momentum
Transport

In turbulent flows molecular momentum
transport is enhanced by “turbulent” mo-
mentum transport. This mode of transport
is due to velocity fluctuations which are ob- -
served in the difection of the three coordi-
nates. HiNzE [1.10] therefore defines turbu-
lence as follows: “Turbulent fluid motion is
an irregular condition of flow in which the
various quantities show a random variation
with time and space coordinates, so that
statistically distinct average values can be
discerned.” Tutbulence can be generated by
friction forces at solid walls (flow through
conduits, flow past plates and bodies) or by
the flow eof layers of fluids with different
velocities past or over one another, as
stated by voN KARMAN [1.11].

Turbulence wjll be explained here only
in-a very simple way. Velocity fluctuations
are of statistical nature. Each component of
a velocity vector has three fluctuation velo- .
cities: wy, w;, and w;. In Fig. 1.5 fluctuation
velocity wy is given as a function of the time
coordinate 7. The time average of the fluc-
tuation velocity is by definition zero. Fluc-
tuation results in momentum transfer,
which is explained in Fig. 1.6 as an exam-
ple, between streamlines 1 and 2. The veloc-
ity of streamline 1 at a fixed point in space
and time ¢ is w,+w,, with w, as the time
mean value of the velocity in x-direction

.

owy‘

: 3

Figure 1.5. Explanation of random tur-
bulent velocity fluctuations.

&
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and wy the fluctuation velacity in the same
direction.' For streamline 2 the velocity is
assumed to be w,, so that w/=0. For this
condition turbulent momentum transfer is

~

Figure 1.6. Turbulent momentum transport from
streamline 1 to streamline 2.

achieved by the motion of a small fluid ele-
ment from streamline 1 to streamline 2. The
size of the turbulence element depends on
the local conditions of turbulence. The
mass transported per unit of time and area
is given by pwy, and the turbulent momen-
tum per time unit transported from stream-
line 1 to 2 is given by:
Ty = —O Wy Wy, (1.10)
The average time value for the turbulent
shear stress is defined as follows:
Ty = —OW,Wi. C (L1
To describe turbulent momentum transport

BOUSSINESQ [1.12] introduced the simple
equation:

t=—pe. I
t ptdy,

(1.12)
which is from a mathematical point of view
an analogous equation to that for molecular
momentum transport as given by Eq. (1.1).
The product g¢, is the coefficient of turbu-
lent momentum transfer, the analogous
coefficient to 7, which is.the coefficient for
molecular momentum transport. The coeffi-
cient ¢, has the same dimension as v, that is
m?/s.

In turbulent flow fields momentum trans-
port is due to molecular and turbulent mo-
tion. The equation for momentum transport
is therefore given by:

d
t=tnt 1= —n(1+6./v) .. (1.13)
dy

The ratio &,/v is a dimensionless quantity.
It is a function of the properties of the tur-
bulent flow field and local coordinates.
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Figure 1.7. Ratio ¢,/v of turbulent to molecular
momentum transport coefficients; ¢,/v and 7,/v
are presented as well as for turbulent pipe flow
over the local radius r* for two values of the
Reynolds number Re.



