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PREFACE

In the 1940s Paul A. Smith asked whether or not the fixed point set of a
periodic, orientation-preserving homeomorphism of §° to itself was al-
ways an unknotted circle. In the fall of 1978 this question was answered in
the affirmative for diffefomorphisms. The proof rests on the work of math-
ematicians in diverse areas of mathematics. In the spring of 1979 a sympo-
sium was held at Columbia University on the solution to Smith’s ques-
tionw It brought together the principal actors in the drama to present
various pieces of the proof. In addition to written versions of the presen-
tations, this volume includes an introduction which explains how the
pieces fit together. (See especially Chapter III, Section 3.) There are also
two papers (Chapters IX and X) containing generalizations of the results
on the Smith conjecture. The last article (Chapter XI) is a diseussion of
the situation in dimensions greater than three. ‘

It seemed entirely appropriate to have such a symposium at Columbia
University. Paul Smith spent most of his mathematical life at Columbia,
In the spring of 1979 he was Professor Emeritus at Columbia and still lived
in the neighborhood. He was one of the most attentive members of the
audience as the resolution of his 38-year-old question unfolded.

It was also at Columbia that a significant step in the solution of the
conjecture occurred. During a conversation with Bass, Thurston leamed
of Bass’s result (Chapter VI). He saw, in the light of his own work (Chep-
ter V), the relevance to the Simith conjecture. He also saw the need to
treat the cases covered in Part C. What was needed to deal with these
missing cases came clearly into focus during conversations between
Thurston and Gordon (the latter being motivated by his earlier work with
Litherland; see Chapter VII). At about the same time, Meeks and Yau
had established exactly the required result (Chapter VIII). However,
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xhi Preface
there was a gap in communication between Thurston and Gordon, on the
one hand. and Meeks and Yau. on the other. This gap was bridged by
Gordon when he Icarned of the existence of the work of Meeks and Yau.
With that. the proof was complete.

There was a purpose bevond the purely mathematical in holding the
symposium. That was to honor Paul Smith. His work has had tremendous
mfluence on topology. and the symposium provided a look at one direc-
tien in which this influence has led the field. During the symposium Smith
sitid that out of consideration for the younger mathematicians he would be
sure to make his next question easier to solve than this one. He was
jesting of course, for he knew full well that mathematics needs deep and
hard problems and that the vounger mathematicians assembled at the
symposium owed him a debt of gratitude for making his questions hurd
and fertile ones on which to work.

Sadly. nothing marks the passage of time between the symposium and
the publication of this volume more clearly than Paul Smith's death: All
who knew Rim are saddened and made poorer by his passing. He was a
fine man as well as a first-rate mathematician.
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THE SMiTH CONGECTHRE

CHAPTER |

The Smith Conjecture

John W. Morgant

‘Départment of Mathematics
Columbia University
New York, New York

1. Formulations

Let S? be the unit sphere in R*. Smith proved [Sm 1] that any periodic.
orientation-preserving homeomorphism of S* to itself with fixed points has
a fixed point set that is homeomorphic to a circle. He then asked [Ei 1] if the
fixed point set must be unknotted. (Unknotted here means that there is a
homeomorphism of S* to itself that throws the given simple closed curve
onto a'geometric circle, i.e., onto S* intersected with a two-dimensional linear
subspace of R*) As Smith realized, an affirmative answer to this question is
equivalent to the statement that every such homeomorphism of $* to itself
is standard, that is, topologically equivalent to a linear (i.e., orthogonal)
action [Moi 1, Sm 4]. Montgomery and Zippin [Mon-Z] showed that in
this generality the answer to the question is no. They gave examples of
periodic homeomorphisms of §* whose fixed point sets are wildly embedded

" With assistance from Joan Birman and Michael W. Davis.
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4 John W. Morgan

simple closed curves (wild in the sense that thete are not even loca! homeo-
morphisms that throw the fixed point set onto a standard arc). This type of
pathology is ruled out if we require the homeomorphism to be a diffeo-
morphism (or piecewise linear (PL) homeomorphism). One formulates the
differentiable version of Smith’s question thus:

If h:S* > $3 is an orientation-preserving, periodic diffeomorphism with
nonempty fixed point set, then is this fixed set an unknotted circle?

What became known as the Smith conjecture was the conjecture that the
answer to this question is yes. Another way to frame the question is to ask

Is every orientation-preserving, periodic diffeomorphism h: S* — S°, with
fixed points, conjugate (by a diffeomorphism of S* to itself) to an orthogonal
diffeomorphism? ‘ - 5
" It is the purpose of this volume to present the recent arguments that answer
this question affirmativel y. ‘ e

It turns out that one makes no essential use of the fact that the space being
acted upon is §3. The arguments apply more generally to homotopy 3-spheres.
Henceforth, £ denotes a homotopy 3-sphere. The main theorem proved in this
volume is the following: ’

THEOREM (Solution of the Smith Conjecture) Let h:$ — $ be an
orientation-preserving, periodic diffeomorphism (different from the identity)
with fixed points. Then the fixed point set of h is an unknotted circle' in £,

Remarks. (1) The arguments proving the Smith conjecture can easily
be adapted for the PL case, or for the topological case, provided that in the
topological case one assumes that the fixed point set K < £ is locally flat.

(2) All known examples in which the fixed point set K is wild have the
property that K bounds a topologically embedded disk.

There is a reformulation of this result in terms of group actions. Suppose
that we are given an effective, orthogonal action of a finite group G x $3 —» §3
and a homotopy 3-cell H. Choose a ball B = §3 that is disjoint from all its
translates under nontrivial elements of G. Remove B and all its translates
from S and sew a copy of H into each hole. The restricted G-action on s3 -
(U, «c 9B) extends in an obvious way to an action on the resulting homotopy
3-sphere. Any action constructed in this manner is called essentially linear.

! An unknotted circle is one that bounds a diferentiably embedded 2-disk D = £.If £ = §°,
then this notion agrees with the other defimition of uakaotted. .



I. The Smith Conjecture 5

THEOREM (Refo;mulation of the Solution to the Smith Conjecture).
Let G x £ = £ be a finite cyclic group action generated by an orientation-
preserving diffeomorphism with a nonempty fixed point set. This action is
equivariantly diffeomorphic to an essentially linear action.

2. Generalizations

The techniques used to establish the Smith conjecture can be used to prove
various generalizations. Two such generalizations are treated in Chapters
IX and X of this volume. In Chapter IX Mecks and Yau prove the following:

THEOREM If G is a finite group of orientation-preserving diffeomorphisms
of R, then the action is' equivariantly diffeomorphic to a linear action, except
possibly when G is isomorphic 10 Ag, the alternating group on 5 letters.?

In Chapter X Davis and Morgan treat another generalization:

THEOREM. If G is a finite group of orientation-preserving diffeomorphisms
of £ s0 that all isotropy groups are cyclic and one isotropy group has order
divisible by a prime > S, then G is equivariantly diffeomorphic to an essentially

_linear action.?

These results lead one to the following:

- QUESTION.  Is every nonfree action of a finite group on a homotopy 3-sphere
or a contractible 3-manifold essentially linear?

The results qudtéd above show that in certain special cases the answer is
yes. There is no known example of a nonlinear, differentiable action of a
- finite group on S° or R3,

3. Some Consequences Relating to the Poincaré Conjecture

The theorem on the solution of the Smith conjecture affirms several special
cases of the Poincaré conjecture: Suppose that h: £ — £ is an orientation-
preserving periodic diffecomorphism of period n with fixed points. Let
be the quotient of £ by the cyclic group generated by h. It is easy to see that
Z is a homotopy 3-sphere. It follows from the theorem on the reformulation

% Sec footnote ! in Chapter X for the case G = As.
3 This result has been expanded to cover more cases (see Feighn [Fe)).



6 John W. Morgan

of the solution of the Smith conjecture that £ is diffeomorphic to the con-
nected sum of i copies of Z. In particular. £ is not an irreducible homotopy
3-sphere. Also. if the quotient space I is diffcomorphic to S*, then so is X.
This last result can be phrased another way: A cyclic covering of §* branched
along a smooth knot is never a counterexample to the Poincaré conjecture.
On the other hand. not all 3-manifolds (or even dll homology 3-spheres) are
cyclic branched covers of $* [My].

Birman and Hilden [Bir-H] have shown that every 3-manifold with a
Hcegaard splitting of genus 2 is a two-sheeted branched cyclic cover of S*.
As a result. there i1s no counterexample to the Poincaré conjecture with a
Heegaard splitting of genus 2.

4. Additional Remarks

The proof of the Smith conjecture represents a culmination of the efforts
of many mathematicians. Of course. the work of Smith himself on cyclic
group actions was seminal. Almost all of the apparatus of three-dimensional
topology. as it has developed from the foundation laid by Kneser, Papa-
kyriakopoulos, and Haken, to its contemporary form_in the work of
Waldhausen, Stallings, Epstein, Jaco. Shalen, and Johannson, among others,
is needed as well. In this volume. we regard this apparatus as “classical,” as
forming the mathematical environment in which the proof resides. The
broad outlines of this proof were first brought into focus by Thurston. The
proof, as it finally emerged. represents a confluence of ideas and methods from
diverse arcas of mathematics (minimal surface theory, hyperbolic geometry,
and klcinian groups. and the algebra of 2 x 2 matrices). The applications of
these ideas and methods to three-dimensional topology arc due to Thurston,
Meeks. and Yau, with help from Bass, Shalen. Gordon. and Litherland. The
most surprising featurc is how well these new technigues mesh with the
purely topological techniques already available. Together. they should have
a profound influence on three-dimensional topology. the solution of the
Smith conjecture being but a beginning.



CHAPTER I

History of the Smith Conjecture and Early Progress

John W. Morgant+t

Department of Mathematics
Columbia University
New York. New York

1. History of the Smith Conjecture

The study of periodic difficomorphisms of the disk and the sphere began
with the work of Brouwer [Bro] and Kerekjarto [Ke] in the 1920s. They
proved that an oriemtation-preserving periodic- diffcomorphism of the 2-disk
or the 2-sphere was conjugate by a diffcomorphism to a rotation. These
original proofs were incomplete and the gap was filled later by Eilenberg
[Ei 21

It was in this context that Smith’s work was done. In a scrics of papers
produced during the 1930s and 1940s [Sm 1 -3] he studied homeomorphisms
of the n-disk and the n-sphere periodic of prime power period p". He showed
that the Z/p-homology of the fixed point set is the same as that of a smaller
dimensional disk or sphere. Furthermore. if the homeomorphism is oricnta-
tion-preserving, then the codimension of the fixed point set is even. Now
consider f:5? — §* a periodic homeomorphism that preserves the oricntation

' With assistance from Joan Birman and Michacl W. Davis.
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