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Preface

Some years ago, one of my mentors took a hard line on the study of micropro-
gramming, which | paraphrase as follows:

Microprogramming is just an implementation technique, a way to get the end built,

rather than an end in itself. There is no more reason to have a Workshop on Micropro-

gramming than to have one on, say, binary decoders.
In an important sense, this is true. There is no good reason I can think of for having a
workshop on any well-understood implementation technique, which leaves us with Micro-
16, part of the continuing effort to understand microprogramming.

The production of any artifact typically goes through several stages: art, craft, engi-
neered routine, and mechanization. This holds equally well for clay pots, binary decoders,
and microcode. Any implementation technique that remains an art is not going to suc-
ceed without the artist; artists are generally in short supply, and difficult to create. Crafts-
men are easier to train: by making microprogramming a craft we increase its applicability.
If we can master the routine production of microcode, and automate that process, then
we will indeed have a well-understood technique, and no more workshops; the binary
decoder analogy will finally apply.

This year’s workshop has an emphasis on firmware engineering and methodology,
which indicates to me that while we may have mastered the art of microprogramming
(well, now and then, one or two of us), and maybe even the craft of microprogramming, -
we have not yet mastered the routine production of microprograms. But a look at the
papers indicates we're making progress.

Putting together a workshop requires a great deal more than booking a site and
collecting a bunch of papers and people. As general chairman, I found myself constantly
being surprised at how much the organizing committee had to do, and constantly grati-
fied that the job was being done. Without the help of these good people, there wouldn’t
be a workshop. The institutional support we have received has also been indispensable,
and is gratefully acknowledged. Special thanks go to Karen Jones and Marie DiLabio for
deciphering my scrawl, and to Linda Torchia for creating the logo and producing the
artwork well and quickly.

Bill Hopkins
General Chairman



Foreword

As with its predecessors, MICRO-16 continues to explore the art, science, and tech-
nology of microprogramming. As the reader of these Proceedings will note, a major
emphasis of the present Workshop is the evolving discipline of firmware engineering
which may be ‘defined’ as the application of scientific principles to the design, develop-
ment, and production of microcode. It is pleasing to note, however, that some of the
more ‘classical’ problems, related to architectural issues and migration, continue to draw
attention. \ : :

As program chairman it is my pleasure to acknowledge the support of a number of
persons who helped in putting together the technical program. I would like to thank in
particular, the referees and the members of the Program Committee who, working within
a very tight schedule, managed to review and produce meaningful reports on the sub-
mitted papers. These referees are listed on a separate page. It was a pleasure to work
with the general chairman, Bill Hopkins. Scott Davidson and Rich Belgard provided psy-
chological and logistic support when most needed. Cathy Pomier provided her usual
cheerful and competent secretarial help. And, finally, my thanks to the authors who, of
course, are the central focus of this Workshop. '

Subrata Dasgupta
Program Chairman
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TOWARDS BETTER INSTRUCTION SETS -

*
Michael J. Flynn

Stanford University, Stanford, CA and Palyn Associates, San Jose, CA

Abstract

An effectively designed instruction set is
the result of many considerations. These include
not only obvious measures such as code size,
performance and implementation cost, but also
issues such as compatibility and especially
design complexity.

In an effort to reduce the design
complexxty, flexible or universal base designs
have been used to realize various instruction
sets or source problem requirements.

Using either a dedicated or universal host,
language oriented DEL architectures may offer
some significant performance advantages over more
traditional architectures.

Towards Better Instruction Sets

Probably few areas of computer system design
are ag controversial as the architecture or
instruction set of a processor. As Professor
Wilkes observed in last year's keynote address
(1), the instruction set is a primary force and
influence upon the microprogratmer. Many things
are implied by instruction set, including
software functionality, software structure,
hardware cost, design effort, etc.

A great deal of recent discussion has
centered on the merits of reduced vs complex
instruction sets. While this focus may be
useful, I believe that there are other issues in
architecture at least as important as RISC vs
CISC. Some of these include dedicated host
designs  vs universal host designs; design time vs
performance; evdluation of various universal host
proposals; language oriented vs host oriented
instruction sets. We will look at some of these
after considering the factors influenc1ng
instruction set design.

*
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A Model (2)

The instruction set lies at the boundary
between compilation and interpretation. One can
regard a computer as consisting of three parts:
an architecture or instruction set, a storage,
and an interpretive mechanism.  The interpretive
mechanism is programmed to- execute the
instruction set and cause the specified state
transitions.in the memory. Since the
interpretative mechanism may itself be a machine

" - with storage and (micro) instruction set we

have a notion of two machines, the host or
micromachine doing .the interpretation of the
image machine or the instruction set processor.

The question of whether the image machine is
"high level" or "low level" is deceptively simple
sounding. Presumably.a low:level architecture
requires few host instructions to execute its
state transitions, while a high level machine
requires many more. This, of course, ignotes
the potential sophistication of the host itself,
what resources it has and what constraints have
been placed upon it. In the absence of being
able to standardize on a particular host
configyration, I prefer to classify instruction
sets as being either language oriented or host
orignted with the distinction being that a
lanquage oriented architecture describes storage
transformations in semantics similar to those
used in a high level language source program
while a host oriented architecture uses objects
present or presumed to be present in the host;
memory cells, registerxs, etc. One might expect
that a language oriented instruction set would
necessarily be more complex than a host oriented
one, i.e. would take more host cycles to
interpret a given instruction. This is not
necessarily tzue, as many recent host oriented
instruction sets have extensive interpretation
requiremertts. (therein ligs the basis of much of
the RISC vs CISC argument (3)).

e

whaﬁ Makes a Good Instruction Set?
Primary Factors

There have been many proposals to evaluate
instruction sets (4), usually on a quantitative
basis. Unfortunately, these evaluations may be
misused since the evaluation process usually
restricts the scope of test material to small
problem state programs. Whatever the limitations




of such measurements they do form at least a
partial basis for instruction set evaluation.
Some of these measures include:

D Static measures - In the absence of
other considerations, smaller static code
size is better. More concise code can be
emitted more rapidly by a compiler, should
have better locality in the memory hierarchy
and require less memory bandwidth for the
instruction stream.

2. Compilation time - An item frequently
overlooked in many evaluations is the time
it takes to compile a source program into an
"instruction set. A typical processor spends
perhaps half its time in compilation and the
other half in problem execution. While
compile time implications are just as
important as run time implications, it is
difficult to measure the influence of
instruction sets on a compilation process.
One compiler may attempt elaborate
optimization while another one is “compile
and go." Some generalities are possible:
architectures that require register usage
optimization and large program size, for
example, would require more compilation time
than those without the same requirements.
However, these generalities are of limited
use. The evaluation of an instruction set
for ease of compilation is confused by the
complexity of the compilation process
itself. Compilers differ in their debuyging
functionality, their attempt at source to
source optimization (rearranging the
original source program in its best possible

form), and simply the skill of the compiler
writer. o ) .
3. Run time - Dynamic measures of an

architecture include such artifacts as
number of instructions executed, number of
data references required for reads and
writes, and memory traffic required as
measured in bytes transferred. Ultimately,
one would like to include a measure of the
number of host cycles required to execute an
image program. Like compile time this is
difficult to do on a comparative basis,
since different hosts have different degreés
of support for various image machines. )

4. Predictability - Related, at least
indirectly, to both compilation time and run
time is the predictability of finding
{decoding) and executing fragments' of an
instruction. Predictability comes at the
expense of code size since information is by
definition directly related to uncertainty.
However, many architectures are created in
such a way as to require needless serial
interpretation of fields as part of the
execution process. The interpretation of
field B may depend upon the result of the
interpretation of field A. The use of
variable width codes to encode a given field
is another difficulty. Huffman codes, for
example, require a serial inspection of the
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contents of a field on a bit by bit basis to
determine even the width of the field.
Predictability in an instruction set allows
successful overlapping and lookahead on the
part of the host in the interpretation of
the image instruction stream.

In addition there are other types of
dependencies which inhibit execution
predictions by the host.

‘Interinstruction dependencies
vwhere the execution of the
present instruction depends
upon the past instruction.
While much of this is unavoi-
dable, several of the worst
interlock difficulties in
high speed machines such as
store into the instruction
stream can be eliminated by
disciplined instruction set
design. :

1.

Process to process dependenc-
ies - here again a well def-
ined call and return mechan-
“ism minimizes the process
entry costs.

S. Transparency - by definition transparency is
a property of the architecture that allows it to

.represent source state transitions on a one for

one basis. 1If program execution is viewed as a
sequence of non-interruptible atomic actions,
then at end of each non-interruptible event the
transparent interpreting machine has the same
state as that specified by the program beiny
interpreted. Clearly an optimizing compiler
destroys transparency between the source and the
image machine. A high speed host that executes
instructions out of order destroys transparency
between the image instruction and the host.
Transparency, as such, has not been much sought
after in either architecture or compiler
development efforts. Its advantages are subtle.
It eases the burden - perhaps makes possible -
program verification. It is also a valuable
property in verifying the coordination of the
execution of concurrent processors. Several
paradoxes in concurrent execution arose from a
failure in transparency.

While the value of transparent execution may

‘be debatable, it is clear that language oriented

architecture can more easily support such
execution than host oriented instruction sets
(regardless of their level of complexity).

Secondary Factors Influencing
the Design of Instruction Sets

In addition to the straight forward
tradeoffs between compiler technology and host
technology, there are a number of additional,
seemingly secondary issues whose importance
frequently overwhelms the primary and more
academic considerations mentioned in the previous
section. These secondary issues include such
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same host technology. Here again universal

iutixes a: conp:t:bitlmit{, environmental ltability. structures may used to ease the design
design time and technology. problem at the expense of the primary
o tibilit - performance measures.
Compatibillty )

All platitudes to the contrary, the
primary level of transportability and
compatibility of programs is the instruction
set, not the higher level language.
Frequently for older programs the source
simply does not exist any longer. Even
vhere the source exists the multitude of
dialects of the same source language creates
obvious problems.

Since most traditional instruction sets
are host oriented, they were created under
then current premises of host technology -
the cost of a register, the speed of memory,
etc. The more successful an architecture
is, the more implementations it has, the
longer its life, the more certain the need
for continued compatibility, and finally the
more difficulty in providing competitive
measures of static and dynamic performance;
an obvious problem in comparinq
architectures. -

e .

T et mon..

The Environinent,, :

Processes can be designed for single
applications or for a universe of
applications. 1In an age of “cheap” hardware
it seems obvious that hardware should be
dedicated toward an environment insofar as
the application is stable and known. To use
a universal processor will naturally give a
poorer performance. On the other hand,
economy of manufacturing scale allows such
processors to be produced at extremesly low
costs. The cost for the design can be
amortized over a much larger quantity of
processors. The hardware may be cheap, but
the design costs are not, unless the
applicability is vast. Of course, this
leads to an interest in universal structures
which we will Qiscuss in a later section.

Ever recognizing that processor costs
include both design and production costs
(i.e. total processor costs), one must also
consider the total system cost. Memory
costs, 1/0, power supply, and housing each
typically exceed the cost of a
-microprocessor and thus dominate the total
cost picture.

Design Time

Complicated architectures require
complicated development programs for both
design and deévelopment, verification and
production. The recent interest in academic
institutions in reduced instruction sets
stems as much from the possibility of being
able to do a design of a simple architecture
and being unable with the same meager
resources to accomplish the implementation
of a more complex instruction set using the

Technology

Technology provides both a direct and
an indirect influence on the architecture
and its resultant performance. Presently
chip area constraints require an . .
implementation to fit a fixed area and
performance may bes severely limited in order
to force an a priori defined instruction set
to fit on a particular chip. With
conventional packaging techniques, pin
constraints may severely restrict access to
memory, placing a premium on those
architectures which make best use of memory
bandwidth. Just as System 370 was a child
of its times in its register and memory
specification, present microprocessor
technology constraints are similarly
products of today's limitations. Upcoming
wafer technologies which package a complete
wvafer rather than a chip may radically alter
much of the current thinking about chip
oriented or area constrained processor

- -.~.architecture.

Three Universal Hosts

There are various ways a computer designer
can create host structures without committing the
design to a particular ,image architecture and
environment. The basic difference among
approaches arises from tradeoffs among. compiler
technology, design time, and compile and run time
performance. Three more or less universal (or
at least general purpose) host structurss are:

1. The universal host machine (UHM) is an
interpretive machine designed to
emulate various high level
architectures. The architecture can be
specialized for particular
environments, such as a particular high
level language. The UHM's limitation
is that it takes additional cycles to
interpret the unsupported image
architecture.

2. The universal ,executing host (UEM)

relies on compiler technology to adapt
the universe of environments to the .
processor, the IBM 801 (5) or the RISC
(3) are examples of the UEM approach.
From our point of view, the high level
language source is compiled into a type
of microcode.

3. Gate array. Initially a gate array may
seem to be a strange type of host, yet
when it is personalized with wiring
layers - a relatively simple design
process - it emulates a desired image
machine. Like all universal approaches
the gate array pays a price for its
flexibility. A given area of silicon



must be depopulated by at least a
factor of two - probably more than 4 -
when compared to a custom lay out.

Each of these approaches pays a price for
their flexibility, but the price is paid in
different ways and at different times. In each
of the above cases a single host design is
adapted to multiple environments by either
compiler, interpreter, or routing technology.

UEMs and UHMS of recent vintage are much
more similar than different. They usually share
at least the following characteristics:

1. A large read/write microstore,
accessible in one internal cycle.
microstore may be used in different
ways. In the UHM it would be used for
micréprogram storage and perhaps cache,
whereas in the UEM it is used almost
exclusively for cache.

This

Main memory is a block oriented device
for bulk storage in a multi-level
storage hierarchy. Movement of
environments from remote executable
levels of storage may require support
ranging from simple to elaborate.

Indeed the instruction sets at the host
level are quite similar. They are both designed
to be executed in one ALU cycle controlling a
small number of working registers. A recently
desigried VLST UEM at Stanford called MIPS (6)
uses an instruction format with some limited
horizontal parallel capabilities. Indeed it has
an instruction format very similar to the
Stanford EMMY (7), a 32 bit UHM designed for
experimental purposes and now in use at Stanford
for several years. The MIPS processor is
particularly interesting as a state of the art
UEM. It has an overlapped organization with a
four stage pipeline; the interlocks are handled
by the compiler. The EMMY design has a three
stage pipeline with interlocks handled by the
emulator (interpreter).

The most significant difference between the
UEM and the UHM environment is the way the
microstorage is used: in the UHM there is a
separate micro-program storage. UHMs and UEMs
are both .improved by use of a cache type high
speed storage for data and programs. The UHM
simply pays the price of larger program static
size with a larger cache, whereas the UEM pays
the price of the micro program storage.

The limited differences between UEM and UHM
might well argue for a Universal machine (UM)
with a reconfigurable microstorage to be
(partially) used as either micro-program storage
or cache.

In a recent experiment at IBM, the System
370 architecture was implemented in a gate array
(8) technology. The processor chip consisted of
an all bipolar gate array using 4,923 bipolar
gates out of a possible (available) 7,640. The
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chip was a 49mm2 die with 200 I/0 pins. A gate
array provides an interesting alternative to
personalizing an architecture in contrast to the
preceding two approaches which customize through
more traditional software. Actually the complete
System 370 consisted of multiple chips consisting
of the gate array processor chip, a control store
ROM chip, a register chip, and main memory chips.
The processor implementation was area limited and
thus the host was realized with only an 8 bit ALU
execution (with full 24 bit address arithmetic,
however). It is important to note that the
purpose of this experiment was to test CAD tools
and not to optimize chip design tradeoffs. The
experiment was successful in that the design was
accomplished in a relatively short period of time
with limited manpower. 1In an experiment
organized to develop a true custom architecture,
perhaps different chip arrangements would emerge
perhaps using custom macro ALUs. and on chip
micro-storage of some smaller size.

Custom (Language Oriented) Architectures

At Stanford in the past several years, we
have developed what we call the DEL - Directly
Executed Language - approach to high level
architecture. DEL is actually a misnomer since
the source HLL program is not directly executed.
Perhaps a better acronym would be DCA - Direct
Correspondent Architecture. Objects in the
source are represented as single objects in the
image program. A basic objective of this
research was to find better ways to customize
architectures to environments. As such, most of
our studies have been limited to particular
source languages. We have completed studies on
Fortran, Pascal, and Cobol. The Fortran and
Pascal architectures (called Deltran (9) and
Adept (10), respectively) were fully emulated
using the Emmy UHM in our emulation laboratory.
Deltran was not supported with the complete
compilation facility, however, Adept is fully
supported. Among the number of techniques used
in the creation of DEL architectures two are
particularly important:

1.
2.

A robust (or complete) set of formats
A contour based implementation of
object specification

A robust set of formats gives concise code
by eliminating both memory overhead instructions
(load, store, push, pop, etc.) and redundant
identifiers (as in a fixed three address format).
All redundancy and overhead instructions can be
eliminated with 21 formats, however, for
practical purpose much smaller sets (about 8)
will accomplish most of the advantages of
completeness. The complete format set uses an
internal evaluation stack, for example consider
the statement:

A=B+C*D



In a stack machine this would be executed with
the following instructions:

push c
push D
*
push B
+
pop A

This would be replaced simply by two DEL
instructions.

Where F1 is a format that identifies the two
operand sources as being explicit, i.e. contained
in the instruction and the result as being stack.
When the result is the top of the stack, the
stack is automatically pushed. The F2 format
identifies the stack as the right hand source,
the left hand source and the result are explicit.
When the stack is a source, it is automatically

popped.

The contour model is based on a description
of prograrming languages originally proposed by
Johnson. Each procedure has its own contour and
at least for dynamic languages a contour which
contains data values used in the called procedure
is loaded from main store into high speed contour
storage at procedure entry time. For both
Deltran and Adept, the specified width for an
object varied from contour to contour. Its size
was determined simply by using the smallest
integer that contains log2 of the number of

unique objects present in that particular
environment or scope of definition. A procedure
with 7 unique variables would have 3 bit fields
to identify a variable. Addressing a particular
variable consists of adding the three bit field
to an environmental pointer which contains the
base for the contour being executed. If the
value is known, as in the case of constants and
locals, it is simply contained in the contour.
The first access to other variables, such as
array elements will create an indirect reference,
the address is determined by using a descriptor
contained in the contour (9, 10).

Some Observations and Data

1. The RISC vs CISC tempest. Many traditional
and fairly complex instruction sets (e.g. $/370
or VAX) include "reduced" instruction sets in
their repertoire. The complexity comes about
from extended functicnality - managing large and
segmented memory spaces, operating system
support, file and character handling primitives,
etc., and of course compatibility. These are not
measured by small single test programs.

One may observe, however, that small, single
user operating systems environments may be an
increasingly important processor application
(e.g. workstations).

2. Universal hosts provide a general purpose
framework for matching environments to hardware.
All such hosts pay a price for this flexibility -
and this flexibility may exist only at design
time (gate arrays - or UHMs with ROMs) or come at
the expense of compile time (UEM) or require
run~-time overhead in loading a R/W UHM
microstore.

3. Gate arrays vs UHM: System 370 emulation. A
UHM of comparable bipolar technology to the 370
gate array was designed and simulated at
Stanford. The UHM was a custom MSI design.
Comparing this to the previously described gate
array experiment:

Comparable UHM

System 370 Chip Emulating 370

Number of
Gates 4,923 11,000 (est.)
Cycle time 100 ns 125 ns (est.)
Data Paths Bb (partially 32b UHM
mapped)

Control Store 54b X 4k {approx.) 32b X 4k

ROM RAM
Emulator Size
(System 370) NA 2,200 words
Av. Cycle/image
Instr. 50 22

In both cases the number of gates does not
include either microprogram storage or the bulk
of the image registers. The estimate of 125nsec

was based on T2L Schottky MSI for the UHM. Note
that if the designers of the 370 chip had 11,000
at their disposal, they would have certainly been
able to realize a well-mapped host - with about
8-10 cycles per image instruction. The 11,000

gates of the UHM would fit on the same‘49mm2 chip
as the 370 in a completely custom design. The
significant trade-off is not area but design
effort and CAD support.

A custom designed UHM chip is another way of
providing a flexible host and may in complex
systems, provide superior results to gate arrays.

4. Language oriented vs Host oriented
architectures. Extensive tests on EMMY emulating
Adept (our Pascal architecture) illustrate the
significant advantage that DELs offer over
conventional host oriented architectures in both
static and dynamic measures. For a suite of
programs including FFT, Kalman filter and maze
runs, the following data (10) is referenced to
Adept (Adept = 1).



Measgure 1BM/360 HP1000 P-Code
Code size 2.40 2,22 3.60
Instructions

executed 3.42 3.55 3.57
Inst. bytes

fetched 3.29 2,57 4.12
Data bytes

fetched 5.82 4.80 5.81
Data bytes

stored 20.15 12.56 9.19

If experience on EMMY is used as a guide,
the DEL architectures are no more complex than
familiar host oriented architectures (e.g. S$370
emulator size is 2200 words while Adept emulator
size is 1500 words -~ with comparable
functionality).

S. wWhile specialized custom designs can yield
significant performance/functional advantages
over a universal host based design, presently the
design cost of such systems is excessive. 1In
many ways the future of architecture is bound to
the future of design tools.

6. There is a significant need for continued
research in architecture - so as to know how to
shape an instruction set to an environment. The
"art" should be removed from computer
architecture.

Indeed there are many new approaches
possible, such possibilities as run-time
expansion of a concisely encoded instruction into
an expanded form can be done as a cache is
loaded. Heuristic architectures could record an
execution history of program execytion to improve
host performance.

Conclusions:
Many factors influence instruction set
design over and above the obvious

compile~-execution tradeoff.

Design time is an especially serious problem
as much of the potential of the technology must

be "derated" to accommodate limitations of either
the design tools or universal hosts.

Language oriented architectures provide an
important basis for the understanding of
customizing an architecture to an environment.
DEL derived data seems highly promising when
compared with familiar host oriented instruction
sets.
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SRDAG Compaction < A Generalization of Trace Scheduling to Increase

the Use of Global Context Information

Joseph L, Linn (1)

University of Southwestern Louisiana

Computer Science Department
P.O. Box 44330
Lafayette, Louisiana 70504

ABSTRACT ~ Microcode compaction is the process of
converting essentially vertical microcode into
horizontal microcode for a given architecture,
The conventional plan calls for a microcode
compiler to generate. vertical code for a given
architecture and then use a compaction system to
produce horizontal code, thereby greatly reducing
the complexity of horizontal code generation.
This paper attempts to extend the existing
techniques used to = perform the conmpaction

process. Specifically, the procedure presented
generalizes the "trace scheduling” method of
{Fisher8l] by usin more global context

A number of

information in compaction decisions, I
are

definitions from classical compaction
generalized to encompass this expanded scope.

Further, the paper presents two example
classes of problems for which the new method
outperforms the trace scheduling technique in
terms of the execution time efficiency of the
generated code, A number of unresolved questions
‘are noted involving the «class of global
compaction procedures.,

1.0 Introduction

. This paper presents an extension to the trace
scheduling microcode compaction method [Fisher8l]
called "SRDAG compaction®". The history of
classical microcode compaction has so far been
marked by two epochs, In the first epoch, the
primary thrust of research was aimed at
discovering reasonable . solutions to the local
compaction problem. The goal of any compaction
algorithm is to transform an input vertical
microprogram . into an equivalent compacted
horizontal microprogram, For the local compaction
problem, the input program is restricted to be a
single (basic) block, that is a program with a
single entry, a single exit, and no branches.

(1) This work is supported, in part, by a grant
from the RCA Corporation.
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When it was discovered that this problem is
NP-complete (for the most general case where the
register assignment is, not known a .priori)
[DewWitt76], attention turned to the discovery of
algorithms not guaranteed to produce the optimal
compaction but whose execution time is within
practical 1limits, A number of guch algorithms
have been discovered and tested [Landskov8o0,
DavidsonB8l}. It has been determined that these
algorithms achieve solutions within a few percent
of the optimal in virtually all cases, However,
error bounds on the performance of these
algorithms have never (to the author's knowledge)
been established. In the case of one algorithm,
microinstruction 1list scheduling [Fisher79], one
would assume that the well known list scheduling
bounds would carry over in a reasonable way.
Thus, the first epoch in' classical - compaction
ended with the discovery of a number of
algorithme running in quadradic time achieving
very good solutions to the local compaction
problem,

The current epoch began with attention turning
to the problem of exploiting parallelism beyond -
block boundaries, It was immediately apparent
that the the global compaction problem could not
be effectively solved by merely oompacting
individual besic blocks autonomously; the
interplay among the basic blocks of a program
exerts great influence on local  compaction
decisions. The solution offered by [Fisher81] is
trace scheduling, a technique by which a path, or
trace, of the program is essentially treated as a
single block to be compacted. In this way, the
scheduler has a more global view of the .program
and interactions among blocks on the trace are -
taken into account, Unfortunately, interactions
with blocks off the trace are not considered. In
addition, compacting the entire trace is- not as.
general as compacting only the first block of the
trace. This is because a major emphasis in trace
compaction is that the trace under consideration
is in some sense the most likely uncompacted path
through the graph. However, moving instructions
from later blocks of the trace into the first may
have the effect of changing which trace through
the graph is the most 1likely. Thus, it seems
reasonable that the trace ehould ' be reselected
after the first block has been compacted,



SRDAG compaction works in a manner that is
very similar to trace ion (1) except that
the subgraph oonsidered is a singly rooted
directed acyclic graph (SRDAG) instead of a path.
Moreover, the entire SRDAG is not compacted
simultaneously; in fact, only the root block of
the SRDAG is compacted in each iteration, The
primary advantage of SRDAG compaction over trace
compaction is that some important improvements
are considered that are not considered when the
global view is restricted to a path, For example,
a particular microinstruction may be free at the
top (i.e. movable to a higher block,
DEFINITION 7 below) of several blocks in the
SRDAG. The SROAG compaction algorithm prefers to
move up such duplicated microinstructions whereas
the trace compactor is not aware of this possible
improvement., . .

The presentation here.. will assume that the
program graph is a directed acyclic graph (DAG),
i,e. that there are no loops. The technique used
for introducing loops in [Fisher8l}] should apply
equally well to SRDAG compaction,

2.0 The Model
This paper utilizes nearly the identical model

as [Fisher8l}. There are a few differences that
are pointed out as the appropriate definitions

are given., The most fundamental unit of
execution for a computing engine is a
microoperation. On a horizontal machine, several

microoperations may be packed together to form a
microinstruction, A basic block, or just block,
is a sequence of microinstructions where only the
last one is permitted to be any type of branch.
Thus, we are led to the following definitionss

DEFINITION 1: For any given microengjne, MOP is
the £“:et: of all legal microoperations for that
engine,

DEFINITION 2: For any given microengine, there is
a function

is_instruction s powerset (MOP) -> Boolean,

The is_instruction function replaces the
resource_compatible function of [Fisher8l] in the
loop-free «case, Further, if I1 and 12 are
microinstructions with 13 equal the mion of Il
and 12, I1 and I2 can be combined exactly when
is_instruction(13). As explained in [Fisher8l],
this function is easily calculated using a
resource vector,

(1) The terminology "trace scheduling® fram
(Pishergl] stems from the fact that list
scheduling is the selected local compaction
technique and from the fact that the scheduling

paradigm and terminology are utilized in the
This presentation does not utilize-

presentation,
the same list scheduling basis; thus,
generic "trace compaction® is used,

the more

DEFINITION 3: A block is a sequence of
microinstructions where only the last
microinstruction is permitted to contain a
branch microoperation, and no branch is
permitted to any microinstruction in the
sequence except the first.

DEFINITION 4: Microinstructions are assumed to
operate by reading and writing certain
registers (memory elements) of the microengine,
1f REGISTERS is the set of memory elements
ditﬁly accessible by microoperations we can
define:

readreg, writereg:
powerset (MOP) -> powerset (REGISTERS)

The functions readreg and writereg are properties
of the particular microengine being considered.
Not all of the registers need actually be memory
elements; indeed registers are also introduced
to model the effects of microoperations on busses
and other data paths of the engine. The

of the readreg and writereg functions is to
specify in an umnanbiguous way how
microinstructions can be rearranged while
preserving the semantic meaning of the program. A
relation may be defined in terms of these
functions that allows us to say that a particular
microinstruction must be executed before another
one, This relation is defined as follows.

DEFINITION 5: Given is a DAG D  of
microinstructions. For any unique
microinstructions Ii and Ij so that there is
path in D from Ii to Ijs

* if the intersection of writereg(li) and

readreg(Ij) contains some register r and

. there is no microinstruction Ik on any path

from Ii to Ij so that r is in writereg(Ik),
then Ii directly data precedes 1j.

* if the intersection of readreg(li) and
writereg(Ij) contains some register r and
there is no microinstruction Ik on any path
from Ii to Ij so that r is in writereg(lk),
then Ii directly data precedes 1j.

If Ii is related to I by the “directly data
precedes” relation, the notation is Ii << Ij.
Further, the name of the transitive closure of
this relation is “data precedes”, i.e, if
Ii <+ Ij then it is said that I{ daga precedes
Ij. It is possible for there to be I1i, 1j, and
1k s0 that Ii <«<1j, Ij <«<Ik, and Ii << Ik.
These "transitive edges”™ may be removed since
this does not affect the behavior of the
compaction procedures,

DEFINITION 6: Given a set ‘of microinstructions,
MI, and a partial order, R, defined on MI, the
set of successors of a microinstruction I in MI
is given by:

successors(I) = {I' in MI | I R I'},

Of course, if I' is in successors(I) then I' is
termed a successor of I,



DEFINITION 7: Given a partial order over the set
of microinstructions, microinstruction I is
free at the top of a block B if it contained in
B and if it is not the successor of any any
microinstruction in B. Microinstruction I is
free at the bottom of B if I has no .successors
in B.

DEFINITION 8: A register r is 1live locally in
block B if some microinstruction in B reads
register r before any microinstruction writes
register r. A register r is live at the top of
block B if it is 1live locally or if there
exists a block B' go that (a) there is a path
from B to B' in G, (b) no microinstruction in

. the path from B to B' writes register r except
potentially B', and (c) r is 1locally live in
B',

DEFINITION 9: A program P: is a five-tuple
G,edgep,startp,live_reg,cmpcty S5-tuple where

G = <(Blocks,Arcs> is a directed graph with
the vertices (Blocks) of the graph being
blocks and the edges (Arcs) representing a
possibility that oontrol can pass between
the tail of an arc and its head,

edgep : Arcs -> [0,1] is a function giving
the conditional probability that control
will flow to the head of the arc, given
that control passes to the tail of the arc.

startp : Blocks ~> [0,1] is a function giving
the probability that the program will start
in a given block.

-hve_reg Blocks -> (subsets of registers)
is a functxon denoting which registers are
live at the beginning of any block.
Live_reg need only be given for leaves
initially since the compaction procedure
recomputes live reg anyway.

cmpct : Blocks -> {true,false} is a function
denoting whether a given block has already
been compacted.

3.0 A Global Compaction Procedure

In this section, the algorithm for global
compaction is presented, The various steps of
the algorithm are represented by pidgen code for
exposgitory purposes; the code given should not be
understood to be a tested implementation,

Global compaction may be viewed as a
procedure that transforms one program into
another one. The goal of global compaction is to
perform this mapping in such a way as to preserve
semantics of the program and also to reduce the
execution time of the program by reducing both
the length of individual blocks and the number of
blocks through which oontrol passes during
execution. The procedure normally begins with a
program in which few, if any, blocks have been
compacted, There are no reported instances where
a high level language microcode compiler actually

operates in this fashion. Nevertheless, if a
procedural binding concept [Davidson80] is
incorporated in the language, the code emitted.
might be precompacted. Also, in the S* family of
microprogramuing languages [Dasqupta?78,
Klassen8l] supports the concept of precompacted
"regions®., Thus, allowing some precanpacted
blocks simply anticipates already emerging
microcode compiler technology.

In addition, the compaction procedure also
requires that the program graph G be acyclic and
that the program may not begin execution in any
block that has a predecessor in G. The process
is an iterative one; on each iteration, at least
one uncompacted block is compacted yielding a new
program, Unfortunately, the compaction of one
block may cause other blocks to be built in order
to preserve the semantics of the program. Each
iteration of the procedure may be described as
follows:

procedure SRDAG_compaction(inout P:program);

begin

reduce_graph_and_compute_livereg(P);

while some block of P is not compacted do
begin
select_compaction_SRDAG(D,P);
compact_root_of_p_updating P(D,P);
;gguce_graph and_compute_livereg(P);

end; )

Several items are noteworthy. First, the steps of
SRDAG compaction are essentially the same as
those of the trace compaction procedure of
[Fisher8l]. This is hardly surprising since SRDAG
compaction may be viewed as a generalization of
trace compaction., One notable difference is that
the bookkeeping procedure of (Fisher8l] is
explicitly integrated into the root compaction
procedure. Second, no proof of termination is
presented.

In addition, this presentation makes explicit
a graph reduction procedure. In the version used
here, the procedure
reduce_graph_and_compute_livereg effects several
important transformations, First, empty blocks
are deleted and strings of blocks coalesced when
possible. Second, wupdated live register
information is computed; in the same step,
useless microinstructions can be eliminated.
Although the procedure as shown recomputes live
register information for the entire graph on each
iteration, execution time might be saved by
recomputing this information only for those
blocks changed or <created in the current
iteration and their predecessors, The
implementation of this procedure is a standard
topic in code generation [Aho77] apd is not
discussed here,

This presentation concentrates on the root
compaction step, However, a few remarks are in
order regarding the selection of the SRDAG to be



