Every Engineer Should Know/14

WHAT EVERY
ENGINEER SHOULD
KNOW ABOUT

MIGROGOMPUTER
PROGRAM DESIGN

Keith R. Wehmevyer



What Every Engineer Should Know About

Microcomputer Program Design

Keith R. Wehmeyer

Cincinnati Milacron
Cincinnati, Ohio

MARCEL DEKKER, INC. New York and Basel



Library of Congress Cataloging in Publication Data

Wehmeyer, Keith, [date]
What every engineer should know about
microcomputer program design.

(What every engineer should know ; v. 14)
Includes index.
1. Microcomputers--Programming. 2. Structured
programming. I. Title. II. Series.
QA76.6.W435 1984 001.64'2 84~12052
ISBN 0-8247-7275~X

Copyright © 1984 by MARCEL DEKKER, INC. ALL

RIGHTS RESERVED

Neither this book nor any part may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming,
and recording, or by any information storage and
retrieval system, without permission in writing from
the publisher.

MARCEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016

Current Printing (last digit):
10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA



PREFACE

The computer has become the single most
powerful problem - solving tool in today's
technically minded world. Whether it is a pocket
calculator or a large mainframe, the computer
offers the ability to perform complicated, tedious
tasks with great speed and efficiency. The birth
and continued development of the microprocessor has
made computing power available at reasonable cost

to the home and small business.

iii



iv Preface

A new problem therefore results: that of
programming the computer to get the desired
operations to perform properly. This book presents
the concept of Structured Program Design, a
systematic way to Create computer programs
efficiently. This method begins with an assessment
of the problem and continues through the
development, coding, and testing of the computer
program. Built into this system is a method of
programming that makes additions, enhancements, or
corrections much easier to implement as the program
undergoes revisions. The book is intended for two
audiences: beginning programmers and experienced
programmers seeking ways to improve the quality
of their software. Structured Program Design tech-
niques provide an excellent way for novice
programmers to "think through" & problem until they
arrive at a working solution. Advanced programmers
in general do not presently use methods to improve
coding efficiency or readability, areas where these

techniques are of great help.

This book covers the entire scope of computer
programming and Structured Program Design, from
problem identification to maintaining existing
programs. Chapter 1 presents a general overview of
the Structured Program Design process, with
subsequent chapters detailing each phase. An
example is carried out through the book to show how
each phase is implemented. An unusual feature of
this book is that all the techniques presented here
will work on a variety of computers that use many

different languages. Thus, these techniques work as



Preface v

well on programmable calculators as they do on
large business computers. The objective is still
the same: to write programs that efficiently
produce reliable output and are easy to use and

understand.

Other supplemental areas of programming are
covered such as a software library, programming
personnel, and program documentation. These areas
are often overlooked but play a key part in

organizations with an ongoing programming effort.

I wish to express my thanks to Dr. William H.

Middendorf, Professor of Electrical Engineering,
University of Cincinnati, for his advice and
editorial suggestions. My wife Jannis has been

invaluable, both with her encouragement and typing
skills. I am also indebted to my brother Stephen
for his excellent artwork. And finally, a thank you
to my entire family, whose support made this work

possible.

Enjoy the book! I hope it makes your programs
easier to write and maintain by reducing the

headaches and late nights along the way.

Keith R. Wehmeyer



ABOUT THE AUTHOR

Keith R. Wehmeyer is currently employed as a
Research Engineer 1in the Software Development group
of the Robot Research department at Cincinnati
Milacron Industries 1Inc., Cincinnati, Ohio. He is
responsible for the hardware and software
development of new robot control architectures. He
received the B.S. degree in Electrical Engineering
from the University of Cincinnati in 1982, and is
currently pursuing a Masters of Science degree in

Computer Engineering.

xi



CONTENTS

PREFACE iii

ABOUT THE AUTHOR xXi

1 AN INTRODUCTION TO MICROCOMPUTER

PROGRAM DESIGN 1
Structured Program Design 2
Parallels With Engineering Design 3

The Eight Steps of Structured Program Design 5

The Concept of Modularity 10
Reasons for Modular Decomposition 11
Unstructured Programming Practices 14
Key Individuals in Program Design 16
References 18

vii



viii Contents

2 REQUIREMENTS ANALYSIS AND SPECIFICATION 19
Requirements Analysis 20
Sources of Requirements 20
Ranking of Requirements 22
Traits of a Good Program 25
An Example 29
Program MENU 31
Program INPUT 33
Program REPORTS 36
Additional Specification 39
References 42

3 SOFTWARE DESIGN 45
Determination of Resources 45
Choosing the Language 47
Design Techniques 49
Flow Charts 53
Psuedo Code 58
The Project Workbook 59
The Design Review 60
Summary 61
Flow Chart Examples 62

4 CODING AND DEBUGGING SOFTWARE 67
Flow Chart Conversions to Program Code 68
Types of Documentation 69

The Structured Walk-Through 72



Contents

Debugging in the Computer
Summary

Sample Program

5 TESTING AND VERIFICATION

Testing: An Extension of Debugging
Comparison to the Specification
Testing

Summary

Reference

6 SOFTWARE PERFORMANCE

Software Description Keywords
Portability

Operator and Instruction Manuals
Optimization by Review

Summary

References

Operator's Manual for the Membership

Program

7 MAINTENANCE

Error Correction

Enhancements and Additions

The Maintenance Procesé
Servicing and Technical Support

Summary

ix

74
76
77

85

85
9¢
92
98
98

99

100
106
108
112
1lle
117

119

131

132
137
140
144
145



X Contents

8 CONFIGURATION MANAGEMENT 147
Release, Roll-0Off, and Archive 148
Notification of Revision 150
Change Notice Documentation 154
Problem Tracking Documentation 156
Summary 158
Reference 159

INDEX 161



AN INTRODUCTION TO
MICROCOMPUTER PROGRAM DESIGN

This chapter presents a complete overview of
microcomputer program design, with key topics
presented in more detail in subsequent chapters. In
addition, a structured technique used in writing
programs is presented as it pertains to structured
program design. This technique will be discussed
throughout the following chapters, as it is the
basis for good program design. Finally, the titles
and responsibilities of several important people in

any programming organization are discussed. We



2 Introduction

begin now with a discussion of what microcomputer

program design is and why it should be used.
STRUCTURED PROGRAM DESIGN

Structured program design (SPD) 1is a systematic
procedure used to create, test, and verify computer
software. As in any other design procedure, the
programmer works through a sequence of pre-planned
steps until the project is completed. This
technique offers many advantages to those who use
it fully, some of which are as follows:

Efficiency. The programmer who proceeds under
any set of defined guidelines should produce
code quicker and with fewer errors. This
reduces costs and can prevent many of the
difficulties that will be discussed later in
this book. As an example, Daly (1) conducted
a study that compared software (any computer
program) and hardware (the physical parts of
a computer) projects of nearly equal
complexity. His results showed that the
software project took twice as long and cost
four times as much to design and maintain as
the hardware project. He attributed a large
part of this increased time and cost to the
fact that the hardware engineers used a more

systematic approach toward design.

Maintenance. It is widely accepted that about
75 - 80% of the programmer s time 1is spent

maintaining existing corporate software.



Parallels with Engineering Design 3

Software maintenance differs from hardware
maintenance in that software 1is '"repaired"
in order to correct errors or add functions,
instead of fixing a system that no longer
functions correctly. By using good design
techniques, the programmer can free himself
to spend more time on new design challenges.
In addition, a program written using
structured program techniques will be much

easier to understand and modify.

Cost Reduction. Hardware costs drop a factor of
ten every decade, so an increasing amount of
a project’s total cost will depend on
software generation. While the programmer
may not be able to boost productivity at the
same rate, any improvement will have an
increasingly significant effect in

controlling cost.

Unfortunately, many programmers do not use
guidelines, and few are learning to use them. 1In a
study by McClure (2), the results pointed to the
fact that most programmers had not changed their
approach to programming in the last five years and
had no plans to do so in the next five. Thus, a
great deal of improvement is possible by following
only the simplest of guidelines.

PARALLELS WITH ENGINEERING DESIGN

Virtually every engineer is familiar with the

engineering method of design. This basic approach



4 Introduction

stems from the scientific method, which is

comprised of the following steps:

1. Observe a phenomenon.

2. Postulate a theory to explain the occurence
of the phenomenon.

3. Construct a test to prove the theory.

4. Draw conclusions as to the validity of the
theory based on the test results.

The engineering method parallels this with the
following steps:

1. Recognize and specify a need.

2. Specify a product to fill the need.

3. Design the product according to the above
specification.

4. Verify that the product design meets the
specifications and fills the need.

Note that all four steps in the engineering
method could be used to construct a program.
Ideally, a specification should first be written
based on a set of requirements. Next, a design
process should be used to create and debug a
program. Finally, the program should be checked
against the specification for accuracy and

completeness.

Other steps should be included in the software
design process as well. Since most programs undergo
frequent revisions and modifications, a convenient

way of recording and documenting changes should be



Eight Steps 5

included. In addition, user documentation should be
prepared, such as instruction or operation manuals.
This documentation is very important, since it may
be the only link between the program’s authors and

users.

THE EIGHT STEPS OF STRUCTURED PROGRAM DESIGN

As previously stated, many of the steps used in
other forms of engineering design are found in
program design. Myers (3) summarizes the work of
software generation into the following eight steps:

1. Requirements Analysis and Definition. This
is the point where the user and the
authors begin the design process by
deciding what they wish to do with a given
configuration of hardware. Notice that the
function of the program is to control the

hardware in an agreed-upon fashion.

2. Specification. At this point the desires of
all parties are put into written form and
are concretely defined. Time and cost
limits are to be established and detailed
as well. Since the specification will be
referred to throughout the rest of the
design process, the creation of a clear,
well - defined specification 1is essential.
This is wusually the 1last point where a
user ‘s input is considered until the

program is operational.



Introduction

Design. Once the program specification is
done, the programmer then begins to
determine what resources will be
required. Following this, construction of
a project workbook begins. This workbook
should contain the specification and all
other materials used in the project. Next,
the program 1logic is contructed using one
of several design techniques into a flow
chart of operation. This flow chart can be
one that uses actual code, English
phrases, or symbols to denote what the

program will do and when.

Programming. Once the program’s logic has
been charted, it is up to the programmer
to convert the flow chart into actual
program code. Included in this conversion
should be documentation showing the "how
and why" of program operation. In essence,
the flow chart statements are placed next
to the code that performs the
corresponding functions. Following this, a
structured "walk-through" review of the
program is suggested as an error-trapping
mechanism before the program is entered
into a machine. The scope and function of
the structured walk-through is discussed
later in this book. Finally, the testing
and debugging process continues inside the
machine until the program functions as its
author believes it should. It is in this
phase that most proponents of structured



