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ON THR DESION AND COMPARISON OF CONTACTOR CONTROL SYSTEMS

By I. Flugge-Iots and H. B. Lindberg
Stanford University, Stanford, Galifornia

Summary

This paper points out some of the similari-
ties of systems synthesised by phase plane and
frequency response techniques, A method is given
for comparing contactor control systems with each
other, and a logical argument is presented for
designing contactor systems on the basis of their
step response. The last section gives a new view-
point and a simple method for finding the error of
& coptactor system operating in the presence of
_high frequency relay "chatter" oscillations., The
range of inputs for which chatter operation will
oocour is defined, All of the theoretical inves-
tigations are supported by analog computer simme-
lations,

Introduction

4 contactor or relay oontrol system is, as
the neme impliss, any control system which em~
ploys some sort of switching device as an essen-
tial component. Its major advantage is its abil-
ity to oontrol large amounts of power by rather
simple means, It is nonlinear ad the accom-
panying diffifulty encountered in analysing it is
a very real disadvantage, 4l1so, in some applica-~
tions it has the further disadvantage of being
inferior to a linear system designed to do the
ssme job, There is. a large class of applications,
however, wherd a contactor system can be shown to
be superior tc & linear system of the same power
handling capacity. These are applications where’
the sudden acocelerations and high frequency os-

. eillations caused by the presence of a switching

device are not objectionable, If such oscillaw
tions are objectionable, they ;3 be eliminated
by the use of a dual mode schemet, but many times
such an oscillation furnishes "dynamic lubrica-
tion® which diminishes the effects of static
friction, backlash, and other parasitic nonlin-
earities,

In recent years, roughly since the early
1540fs, more and more effort has been made to
break down the analytical "varrier” which has
linited the usa of contactor syatems. Many meth-
ods have been used to synthesise contactor sys-
tems and various types of contactor systems have
been aynthesiazed, In what follows, some of the
simjlarities of systems designed by very differ-
ent techniques will be brought out, Also, &
mathod for comparing contactor systems with each
other will be given and a logical argument for
designing oontactor systems on the basis of their
step response will be presented, The last section
gives a new viewpoint and & simple method for .
finding the error of a contactor system opsrating
in the presence of the high frequency “chatier®
oscillations mentioned earlier,

Similarities of Contactor Control Systeas

A Phase Plane Approach

One method of studying & contasctor control
system is to look directly at its transient re-
sponse in the phase space, Consider, for oxmgla,
the second order system studiad by Flugge-lots<.
This is a sero-seeking device whose differential
emation in a de~dimensionalized form is

' e Dy sy -ely +ky')m g (1)

where 4 is the controlled variable, @ is the
switching function, D is a fixed paramster of the
controlled process, and k is a parametsr of the
switching function to be determined to give good
response, Notice that in this system, the switoh-
ing function is simply the sign of W+ ky!' 3
that is, it takes on the values + 1 or = 1 depend-
ing on whether Y+ ky!' is plus or minus respec-
tively. There are systems with more complicated
switohing functions that give "optimun® rospomo3
but for the moment we will study only linear
switching funotions because they are mors easily
realized in an actual application, :

Being a second order system, the phase space
becomes a phase plane as shown in Figure (1),
Notice that the \ axis is inclined to the !
axis by the angle ¢ = arc cos(- D), If this is
done, the phase plane trajectories become logas=
rithnic spirals of the form )

2w

rere v (@)

where r 1s measured from the point (O,. +1) de-
pending on the sign of § ; vt is the angle between
two radli extending from (0, +« 1) 3 and

ve \Jl - Dza The curve shown {8 a typical re=
sponse to an initial error and error rate repre-
sented by point Py.

Notice in Figure(2) which is essentially an
enlarged view of part of Figure (1), that for the
ideal system of this typs (k>0) no motion is de-
fined beyond point A o That is, only two trajec~
tories passthrough this point, namely:

AB for § = + 1 and CD for f = =1 3 and the only
paths leading out of point ‘A are those towards
B and D, Motion cannot proceed along the path
towards B because above the switching line

(W + ky' =0), Bq, (1) dictates that the control
function § is. -1 3 also, motion cannot proceed
along the path towards D because below the
switching line, @ = 4+ 1. A point such as A is
called an "end point." An end point occuis when
& trajectory such as PAB intersects the switohing



line twice in succession on the same side of the
origin, Every path such as shown in Pigure (1)
has an end point, .

If the device which forms the switching funce
tion # is allowed to have an imperfection such as
a time delay, then the motion does not stay at
point A but proceeds to point F , Here § can
change to = 1 etc., and the motion proceeds to-
ward the origin as shown by the solid path, The
average path is along the switching line and the
differential equation of this averags motion is

Yeky =0 )
whenoe
- 11
Y = Yy ¥ ().

BQ, (L) shows that in the "end motion," \ tends
toward sero exponentially, A consideration of
this motion alons would indicate that k should
be chosen small and positive, However, if motion
is to procesd from a point such as P, in -

Figure (1) to an end point quickly, %hen it is
advantageous to increase k o Depending on the
gosition of P;, & compromise selection of k ocan

e made,

For study of response to atzp inputs, much
of the theory developsd for Eq, (1) can be ex-
tended to a follow-up system as shown in
Figure (3). The equation of this system is

¥ + 2Dy' + y = sgn(e + ke') (5)
whioch can be written Ly substituting y = x = o as
" + o' + o= x -‘lgn(o 04ko') 6)

for a step input wherg x® = xt = 0, The presence
of x affects the position of the-fool of the
phase plane spirals indicated in Figure (1).

The Method of Kochenburger

Another msthod of approaching mn—op:k-m
relay systems is presented by Kochenburgeri.
This technique is entirely different from the
phase plans mathod. Whereas the study of the
phase plane gives a pictorial view of the exact
transient response, the mathod presented by
Kochenburger provides an extension of the
frequency-responss-stabiiity criterion of Nyquist,
The basic assumption is that if a simisoidal aig-
nal is impressed on the relay coil, the periodic
square wave output of the relay can be replaced
by its first harmonie. This assumption becomes
more and more acceptable as the complexity
(degres of the differential equation) of the sys-
" tem being controlled increases [ﬂiin Figure (B]
because of the filtearing aotion ol these compo-
aents,

With this assumption, the action of the re-
lay can be expressed in terms of a “describing
function® which gives the amplitude and phase
shift of this harmonic in terms of the amplitude
a of the impressed simusoidal input and the re-
Yay characteristics, The block diagram is shown
in Figure (L), where the describing function 1s
GD’ the transfer function of the controlled proc-

ess is Gs, ard Gc is a compensation network to be

determined to give good response and stability,

In order to determine the compensation network,
Kochenburger uses the standard frequency response
techniques that are used for linear systems with
the exception that the system must be examined
for each value of GD since it is amplitude depende

ent, Absolute stability means, for example, that
the polar plot of UGc(jm)Gs(jm) mist completely

enclosa the locus of = ()D(A) rather than merely
the point = 1. See Figure (5).

If Gg = 1/(p? + 20p), Kochenburger found that
the compensation network should be of the form
Gg = (L + w)/(L+Zp) vaere & is made as large

as possible without alilowing too much noiss to be
transmitteds As an interesting compagison between
this result and the conclusions of Flugge-Iots,
consider the output ¢ of the compensating nete
work

1ep (1_:_)1,,
cme = =e|las = )]
le~p l+=p
e
In the time domain, this can be written as
o=e. e, (8)

where e', is the time derivative of e filtered
by the n‘twork whose transfer function is

/(1 4 :-p). If we reduce the aystem equations

to a non~dimensional form, the output of an ideal
relay is simply

R=g3gno=sgn(e + 't*o't) (9)

and the differential equation of the complete sys=
tem is

¥ + 3 = sgu(e + t'e'y) (20)

A direct comparison of this equation with
Eq. (S) studied by Flligge-Lots shows that what
Kochenburger refers to as a "series compensation
network™ is referred to as a "control function®
by Flugge-lots. The only difference between them
is that e' appears in one.and o', appears in the
other, But this is only an academic diffgrence
because in any physical application of Flugge=lots!
work, the error derivative e' mst be filtered
by some means, The left hand sides of the



-

" .
equations differ because Flugge-lots studied the
more general case where the output itself appears
in the equation.

If one examines other exsmples given by
Kochenburger, an extension of ghie comparison can
be made, For Og = 1/p(~p + 1)° he finds that the

1ead network required for compensation mist be
quadratie, The network he used had a trensfer
function of

.
Gc.lolgogg

14dps+fp

For the required phase lead, he makes d and ¢
as small as possible, again without transmitting
too much noise., In the ideal case where d and
£ are both sero, the compensator-relay combina-
tion gives an output of

(1)

R = sgn(e + ae' + be") (12)

oh is the same form of control function which
Flugge-lots found necessary for good performance
with & differential equation of third order,

A Varied Coefficient Scheme

What at first sppears to be & completely

different scheme for synthesising a contactor

system is pressntsd by Flugge-lots and Taylor ,
The block diagram for this system is shown in

Figure (6)s The differential equation of this
system in a de—dimensionalized form is

Y +DA GBI + Qay)y=x (3
where

B, = = 1P sen(y'e) - ,B sgn(y'e’)

Yy = = 1Y sen(ye) - ;v sga(ye*) (1)

with 1B, ,B, 1Y, oY being constant, Notice that

the coefficients of the differential equation are
varied rather than a lumped saturation quantity
as was the case in the two previous examples,

The switching functions for p. and y_ are
each broken up into “two parts, one which &mngu
with e and one which changes with e' It is
shown in Referenoe (6) that it is more advanta-
goous to switch single quantities p and y acoord-
ing to the following equations

4

B, = - B sgn [y (s + ke')]|

Y, " -Yom [7(0 + ke')] 15)

where § and y are positive ooknsmu. If Eqa. (15)

are substituted into (13), the complete equation
becomes

ey +y

=x+ (2 |7 +v|v]) sen(e +ker)  (6)

_ Notice that this differential equatiop is some-

what similar to Eq. (5) studied by Flugge-lots
and Eq. (10) studied by Kochenburger., The main
difference is that in Eq. (16) the coefficient of
the "switching function" is a variable whereas in
Bgs. (5) sndn%lo) it is constant, The imput x
is also present in Eq, (16) but it will be shown
later that this has the same sort of effect as the
varying switching function coefficient. ’

Comparison of Contactor Control Systems

Although these systems are similar, there
are differences that warrant investigation. Can
it be said, for example, that Eq. (16) will give
better response to a random input than Eq. (5)?

To begin to answer this, let us first write
Eqe (16) in terms of the error e by substituting
y=x~-o .

e? + 2De! + @

= x* + 2Dx! - (ZDﬁ v+« lyl) sga(e + ke')
Qan

Consider now that this systea is operating
in a region where input velocities and accelere~

tions are small, or |x* + 2Dx'|< 2DB |¥%| + v |¥|.

Tn fact, if this inequality is not true, the out~
pat will soon begin to diverge from the input x .
If the inequality does hold, then the terms gov-
orned by the control function sgn(e + ke'!) pre-
dominate and determine the sign of the entire
right hand side of the differential equation. Un~-
der these conditions the error is soon driven to
zero and it _has been shown analytically by
Flugge—lotsz and experimentally by Lindberg that .
the error "chatters" about zero with a small ampli-
tude amd very high frequency relative to x or ¥
due to relay imperfections, Because the frequency
is high and the amplitude very small, quantities
such as x' , x*, and y may be regarded as
constants during a few error cycles,

208 |y*'| oan be considered small relative to
Y |¥| » and the equation of motion becomss

o" + 2De? te = -8y if e + ke'>0
e" + 2De! ¢o-¢b1 if e + ke'<O

where 85 and "’1 are positive constants,

(18)



Similerly, we can transform Eq. (5) into
o" + 28! 4 &6 = x* 4 2Dx' 4 X - sgn(é + ke') (19)

AfQin, 1f the error is not to diverge,
’ + 2hx' + x|<1 and we can write

" + 2De! + 8= = @

o if e +ke'>0

e” + 2De! + @ = + D,

> if e +ke'<O

(20)

Notice that thess equations are identical in
form to Bgs, (18). The only difference between
these equations is the values of &,, a,, by, and
b, and perhaps the value of ke fact, %:hese
e§uations would result sven if the switching func-
tion was something more complicated such as

sgn(e + kye! |e!]) because we are studying chat-

ter response which is close enough to the orlgin
of the e, e¢' phase plane that any complicated
switching function can be aporoximated by a
straight 1ine, and hence the switching function
reduces to sgn(e ¢ ket},

The parameters of these equations could con-
ceivably be very different between the two sys-
tmes and within each system itself at different
times depending on the instantaneous values of
X, ¥, and their derivatives, It is shown in
Reference (6) that the amplitudes of the chatter
errors for Eqs, (18) and (20) are approximated by

()

(22)

for a relay time delay imperfection of T , if
each pocurs separately, In each of these expres-
sions, & representa the driving force amplitude

appearing on the right~hand sides of Bqs, (18) or
(20), such as a,, for example, -

In an actual system, both threshold and time
delay imperfections occur together and since a
appears in the denominator of Eq. (21) and in the
mmerator of Eq. (22), the error amplitude tends
to depend only slightly on a . The error de-
pends a little more on k but even this depend-
ence is secondary to the dependence on relay
characteristics because k appears in only one
of the two expressions for error. We must then
conclude that during chatter response, that is,
when the input is varying slowly as indicated by
the inequalities that were necessary for the for—
mulation of Eqs, (18) and (20), the system re-
sponse depends mich more strongly on the relay
characterisitiocs than on the design of the control
aystenm equations. -

A Design Criterion

How, then, should one compare two different
system equations? First, recall that the errors
during chatter oparation are very small, As was
mentioned earlier, there is a large class of appli~
cations where this type of response is very satis-
factory, and we might call the range of inputs for
which chatter occurs the "region of satisfactory
response.® Hence, one measure of merit for & sys-
tme is that it have the largest region of satis-
factory response consistent with its saturation
values, From this stendpoint we can say that
Eq. (S) is a better system than Eq, (16)e To see
this, first recall that the region of satisfactory
response for Eq. (S) is defined by

: ‘x" + ?Dx' + x|<1 (23)

where the saturation value of this system is unity
for the units chosen,

To find the region of satisfactory response
including saturation effects for Eq. (16) we rmst
first gather together all of the variables that
are preduced by the component whose seturation we
are considering, For Eq. (16) this refers to the
quantities that exist at point ®m in Figure (6)
where a motor or amplifier, for example, would
saturate, Eq. (17) is now written

e® + 2D + 0 = x® + 2Ix? + X

- EH (Bjy'| + v [7]) sen(e + ke')] (2k)

where the terms in the brackets are the same terms
as on the RHS of Bq.(16) and are the quantities at

point m . The inequality to insure chatter oper-
ation is now defined by

|x* + 2Dx? + x|

<|x+ (BI7Y + 7I¥) sgnle + ker)|  (25)

This must necessarily give the sane or a smaller
region of satisfactory response than that defined
by Eq. (23) bscause the RHS of Eq. (25) is a com-
plicated expression which must be squal or less

than upity if the systems of Eq. (5) and Eq, (16)
are to have the same saturation values, :

Nothing has been said yet about what control
function would give batier reasponse to a random
input, During chatter operation the choice of
different control funcitions is equivalent to
changing k o In our discussion of EqQse (21) and
(22), howsver, it was seen that changing k had
a secondary effect on an already small error,
Thus if we are to compare or design & control
function, we must examine responses to inputs
vwhich fall in part, al least, outside the “region
of satisfactory response.®™ Also, the test input



must fall largely in the region of satisfactory
response in order to insure that the test will
not degenerate into a simple examination of satur-
ation operation, The most easily produced inputs
that satisfy these requirements are discontimi-~
ties, the simple step function being the most
commonly used,

Therefore, after a system is designed to
take the full benefit of its saturation values,
s rational approach to designing it to follow
random inputs is to design it to follow a step
input in spite of the fact that superposition
does not holdl

Chatter Responss of a Higher Order System

It has been shown that for a second order
system, the error during chatter response is very
small and depends mainly on the relay character-
istics, There may be anotber error that ccours
simltaneously, but it does not become noticeably
large until one considers higher order systems,.
This is an error which arises due to the delays
encountered in forming the quantities in the
switching function., To demonstrate a method of
finding these errors, let us consider a third
order aystem with a linear switching function.
‘In a de~dimensionalised form the differential
equation is

280y 4 oy

= - Ksgn(e + ko' + kyo") = =N ] (26)
In forming the derivatives e' and e" , filter—
ing delays are invariably incurred in a physical
system. Recall also thate' = x! - y', If in ob~
taining this difference more deliy is encountered
in obtaining x'* than y' or vice versa, then a
noticeabls error will incur, Suppose, for exam-
ple, that y* is available with no appreciable
delay but that filtering is neceasary on xt .

If we call x! the filtered x!' , then the
transfer funoction for x' is of the fom

x!

Eal e S YR T3 v B e )
(27)

If we consider simsoidal inputs x = A sin ot and
assume that the time constants T,, sre small, the

difference between x' and x! is found to be

R -xt = wg[r)] eosler =3 -FF T, (28)
Similarly, if we define X* by
Fd 2 (29)

- 2
X (T +T;p) (TeToP) o o o (LeT50)

for small '1'21 We can write

et = Ma‘[Tzil sin(ar - ;- - gﬁ Ty) (30)
Defining &' and e" by
PO
and o xm o yn (31)
Eq. (26) for a system with delays becomes
7+ 28503 & iy
= « N sgn(e + k1:' * kzz“) ‘(32)

. Recall that we are considering operation of
the system for simusoidal inputs with low enough
frequency that chatier operation is insured,

Under this condition the argument of the awitch-
ing funotion is driven to serv and we can inves-
tigate the average motion in a way similar to that
of Eq. (3) by considering ’ .

e+ kl:' + "2:- -0 (33)

In terms of the undelayed error derivatives, Kq,
(33) becomes a differential equation for the
actual error e in which we are interested

[ Y kle' + kze"

= -k (x' - x') - ky(x" - x7) (3b)
This is simply the differential equation of a
1linear forced vibration problem, where the drive

ing term is a function of the input x and the

time delays 'rn and T21‘

Verification of the Theory for Simusoidal Inputs

Experimental verification of this theory was
made using the snalog computer circuit of Figure
(7)e The sinusoidal input was generated by solv~
ing the equation
* +e?x=0
on amplifiers 7, 8, and 9o This was dome rather
than using an external function generator in order
to reduce the noise on x and its derivatives so
that the noise problems could be studied separate-"
ly. Generating these sine waves in the computer
gave the additionsl advantage that x' and x*
were avallable as outputs of integrators. This
allowed the study of the effect of x' and x*
filtering delays sepirately because these inte-
grator outputs could be used directly with no fil-
tering.



To study the effect of x! filtering delay
alone, x' was derived by actually differentiat-
ing x in amplifier 17 and filtering it as showm,
while x® was taken directly from smplifier 7,
Solving Eq. (34) with X* - x* = 0 and taking
x' - x* from Bq, (28) the error (neglecting
ohatter) is

2
- Akleo K 'rn

) \/(1-k2m2)2;k§~2

Xcos(m-;--g&'ru-o)

S S
i ]

Experiments wers run using various values for
4, ky» kz, w0, and Tli and the error amplitude was

reasured and compared with the values given by
Eq. (35)e A typical computer response is shown
in Figure (8a) and the results are tabulated in
Table (1)e The agreement between theory and ex-
perimental results is quite good,

(35)

where

Further experiments were run with x* filter-
ing delays alone and then with x' and x* de-
lays ocourring simltanecusly and the results
again compared quits well with the theory. The
theoretical expression for the error with x*
delays alone is

.- - My § Ty

J(l - kzmz)z . kimz

X ein(er - 5= §§ Ty - ©) (36)
and for x' and x" delays together is
™ \/"i (f Tyy)° » 156" Tp)°
‘ -
J(l - k2m2)2 . kimz
X ocos(ar = u ) (37)

In deriving Bq. (37), the RHS of Eq. (3L) becans
- ey [1] cosor - F-$ 5y,

T TN 2 FEMEC)

Since both f Tyqo and g Tpyw are small, they were

taken equal for phase angle purposes so that the
two terms in Eq. (38) oould be taken as orthogonal
to give the simple expression of Eq. (37)e

Response to Other Inputs

We have demonstreted that for simusoidal in-
puts of low encugh frequency that chatter occurs,
the resuliting error, exclusive of the chatter
error, may be calculated by linear theory using
Bq. (3h)e It is now postulated that Eq. (%) can
be used to find the error for input that var-
ies slowly enough to insure chatter operation., As
an experimental verification of this proposition,
tests were run with an input that consisted of
two simusoids at different frequencies. It was
observed that the error was merely the sum of the
errors that would result if each sinusoid were
applied separately., That is, the law of linear
superposition holds and hence the simple linear

theory can be used for any input where chatter
ocours,

The input that was used for this test was
x = 15 cos(O.Lh6t)+ 1,00 cos(2.8319 The response
for this input and for each of the simusoids sep-
arately is shown in Figure (8). For simplicity
only an x' filtering delay was used. Experi-
mental error amplitudes were 0,14 volts and 0,27
volts respectively and a computation using
Eq. (35) gave 0.15 volts and 0,27 volts for these
amplitudes, The error for the combined imput is
merely the sum of these errors as can be seen by
inspection of Figure (8¢);

The errors in all of these experiments are

quite large because the filtering lags were made
intentionally large,

Reduction of Errors Due to Filtering Lags

It was mentioned at the beginning of this
chapter that the reasson for the errors discussed
here is that the lags encountered in finding x!
and x" are not the same as those encountered in
finding y' and y" respectively. The validity
of this statement can be seen if we look at the

lags in x' and y' for example, The delayed
8' used in the switching function is

o mx (b -T,) - y(e - T,) (39)
This can also be written

o = xI(t - T’,) -x'(t - '!'y,)

¢x'(t-Tx,)-y'(T-Ty,) Lo)

or
e et - '1",) -x'(t - Ty,) +xt(t -T,) (W)



Substituting Bq. (k1) into Eq. (33) ssuming for
the moment that e" = o" we obtain

o(t) + kle'(t. - 'ry,) + kze"(t)

- klx'(t - ry.) = kyx!(t - Tx.) (2)
or

e(t) « ko' (v) + 120'“)
+ky e'(t) - ot (t - Ty,)] (u3)

But even in the case when we do get undesir-
able errors, they are always quite small relative
to the amplitude of the input and we can neglect
the second term on the RHS of Bq. (L3) as compared
to the first, If this is done, it can be seen by
inspection that the magnitude of the driving term
in Eq. (L3) depends very strongly on the differ-
ence between Ty, and T,, and disappears if

Ty, = T,y « In this case we must reconsider the

second term on the RHS, but this would still give
a very small error as compared to the errors when
Tys ¢ Tes o

In any relay system such as discussed here,
therefore, in order to reduce the errors incurred
during chatter operation, the designer should
nmake an effort to provide circuitry to make the
filtering delays for x' ad x* equal to the
delays for y! and Y* respectively,

Inpet Limits to Give Chatter Response

It is rather curious to notice that so far
in this discussion of response to "slowly varying"
inputs, no mention has been made about the co-
officients of the differential equation of the
controlled process, The entire response during
chatter operation has been determined by the co-
officients in the switching function argument and
the delays required to measure input and output
derivatives, In considering the limits for the
inputs that will give chatter response, however,
the reverse situation exists, These limits de-
pend only on the coefficients of the differential
squation of the controlled process and the magni-
tude of the driving term N , and are found, as
for the second order system, by simple saturation
considerations, For Eq. (26), the expression for
x which defines the limits of chatter operation

is

N>[x"' +2$n;~§n.2x']m (k)

For x = A sin wt this exprassion becomes

N>A \l(m3 - mn2)2 + h:’n"’m“ (45)

This expression, in the limit when it becomes an

equality, defines the breakdown frequency L

where chatter stops and the error becomes very
large. The values found from Eq. (4S) were only
slightly less than those found in analog computer
experiments.
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PHASE-PLANE TRAJECTCRIES AS A TOOL IN ANALYZING NON-LINEAR
ATTITUDE STABILIZATION FOR SPACE MISSILE APFLICATION

Jack L. Halvorsen
Lockheed Missile Systems Division
Palo Alto, California

Summa.ry

In & variety of missile-control problems, a
steady-state oscillation in displacement angle is
not objectionable. If this oscillation can be tol-
erated, the on-off servo is extremely helpful in
conserving control energy in the presence of system
noise. An attitude-stabilization system using a
two-way relay servo, reaction jets, HIG gyros, and
lead networks, to give an equivalent rate and posi-
tion feedback, provides.the type of steady-state
response previously mentioned.

The phese-plane method, however, is readily adapt-
able to either of the other two modes of operation.

The attitude stabilization system to be dis-
cussed consists in part of a two-way relay servo
(bang-bang servo) driving a reaction-jet nozzle
valve. The reaction Jets are located on the per-
iphery of the misaile in a plane perpendicular to
the missile body axis. When energized, the Jets

" produce constant control torques in either of op-

This paper presents phase-plane techniques to
determine the relationship between frequency, re-
quired impulse, maximum rates and maximum displace-
ment as a function of lead network parameters, in-
herent hysteresis, Jet force, and time lag. Examples
are verified using analogue computer mechanization.

If the transfer function for the lead network
is appropriately expanded, the problem of analysis
lends itself quite readily to phase-plane solution.
In cases where the initial conditions aré known, the
phase plane gives the transient and steady-state
response within the accuracy of graphical solution.
The effects of inherent hysteresis, time lags, and
extraneous torques are easily determined.

Introduction

Perhaps the most important consideration 1in the
design of the control system is that the system be
as simple, inexpensive, and reliable as practicable
and yet require as little angular control impulse as
possible. If a steady-state oscillation in displace-
ment angle is not objectionable, the on-off servo
can be used in lieu of a proportional system, since
the on-off servo can be designed to use much less
control energy in the presence of system noise. In
addition the on-off servo system can be built with
suitable reliability and at much less expense than
can the proportional system*.

Since this paper is concerned with stabiliza-
tion it will be assumed that no missile maneuver
commands will be’ introduced into this mode**. The
paper will be restricted to roll stabilization by
a relatively simple and reliable autopilot system.

#The proportional system is normally more expensive
owing to the additional cost of the proportional gas
valve.

**The introduétion of certain simple types of maneu-
ver command can be handled very readily in the
phase-plane analysis, vhile more complex types re-
quire a more complex phase-plane approach. See
references 1 and 2.
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posite directions. These control torgues produce
& continuous s’ceady—state dither about the missile
body axis.

The stabilizing control signal is derived from
& HIG gyro. The rate signal used for damping is ob-
tained from either a conventional rate gyro or a
suitable lead network.

Missile Roll Dynamics

The equation for the summation of torques is
written

IL = (1)

PI_+ (1, - Iy) - Ixz(R + PQ)

Because of symmetry, the inertial cross-coupling
term and the product-of-inertia term are egual to
zero, since

(See figure 1)

Missile Roll ’Control Configurations

Figure 1.
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to misalignments or accelerating rotational machin-
ery. The fy(y) can be a function of time;, but should
be a step function. (This is not a very severe re-
striction, since most of the torques encountered can
be closely approximated by a step function.) Equa-
tion (2) is rewritten )

2
e &
X x

Equation (3) is the equation of motion and will be
used to develop the phase-plane trajectories.

The Roll Control System

The roll control system is made up of the sens-
ing device, the servo system, and the missile roll
dynamics. It 1s best described in block diagram
form. Two configurations are shown in figure 2.
When 83 is in position 2, the derivative signal is
derived from & lead network.
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Figure 2. Roll Control System and Missile
Dynamics, Block Diagrem’
Therefore, equation (1) reduces to Autopilot Parameters
EL=PT =18 (2) In analyzing the system, a muber of simplifi-
x x cations can be used which will lead to a good ap-
proximation for system performance. The KIG gyro
where time constant (Ty) is typically 0.003 second and is
ususlly negligible in this type of system. A typi-
EL = (F/2 + F/2)r + ) cal "bang-bang" control valve characteristic can be
: approximated from an actual valve characteri(stic):
= 1e’ shown in figure 3. The valve time constant (Ts) is
F/2 = the force exerted by ome nozzle negligible. Consequently, the valve tranafer Ce
r = length of the moment arm tion can be represented by a transport lag of seven
The term £ ( ) represents extraneous torques due
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Figure 3. Response Test for the Normelly Closed
Three-way Futurecraft Solenoid Valve
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milliseconds if the valve is physically located ad-
Jacent to the Jet nozzle. Usually an attempt is
made to keep the line between the valve and nozzle
very short so that additional transport lags are not
introduced. All other parameters are considered de-
sign parameters and will be controlled to obtain the
desired system performance.

Phase-Plane Analysis

The equations for the phase-plane trajectories
will be cbtained from equation (3). The time con-

stants T) and T; are considered negligible. The
equation of motlon is rewritten
BB, B
x x
(13 ‘b t
= —LlIx -61+h<b<b] -h (5)
wvhere
f.4 (6)
and
a8 _ =
S=? (n

Dividing equations (%) and (5) by equation (6) and
integrating yields the equations of the phase~plane

trajectories. They are written
2 2 . \
0" = -I—x[Fr + zh(t)]o +Cy 8 << -8 (8)
2 mo+c -8+hdd b (9)
o ek LA BEDD

vwhere Cl and C2 are constants of integration.

The trajectory is. obviously parabolic in na-
ture, and the foci always lie on the & axis but ere
translated and reversed in sign as the motion con-
tinues. Consequently, a template that will aid in
plotting the trajectories is easily made.

The equation for the control quantity 8 is

written
-b(s) = [;(L: S + l] K° 0(’)

or

Whenever
ing. The
tion (10)

<8< - the reaction jets are thrust-
et-on line is therefore defined by equa-

15

(10)

18 = 8= [gh o]x,

Equation (10) can be rewritten by solving for &
K .
[ . u
[ I ¢ = (u)
LR ¥
The Jet-off lines are dsrived from the conditions
that the jets are off for -8 +h<b<b

The Jet-off equations are written

bl-h
e - b°+ o) (12)
and
K 8 -h:
[ 1
6 'K6°'<K:° (13)

Iransport Legs and Time Approximations from the
Phase Plane. There are & number of ways of de-
termining the elspsed time from the phase-plane
trajectories. The two methods found most conven-
ient for ‘the purpose of this paper are shown below.

In method onie, by definition

. d°
®= b7
at - 3¢
[
then
“ ab . ad
t -ty = f R K (1k)
s ¢ ¥
(o}
if o(l) is a constant.
Method two uses the definition
o= 52
then
°1
as ., A . g
t1-% = f % i (average) . (15)
. 00 [ [

The transportation lag is now easily handled. The
motion proceeds along the trajectory until the jJet-
on or jat-off line is traversed, at which time (tg)
the control quantity calls for a torque. Because
of the transport lag, the motion continues along
the same trajectory until time (t;) when the force
is applied at the nozzle and the body changes its
direction of motion. Since t; - tg 1s specified
by the time constant of the transport lag, the
transition point on the trajectory is easily ca.l- '
culated from equation (14) or (15).



Lead network case. The equation for the control
quantity B can be written

1
-8 (s) = G’f‘% Ky 9(8)

Applying the well-worn but useful technique of
expanding equation (16) into a power series and
then obtaining the equation for & in the time
domein yields equation (17)

(16)

-8 = 1(,[0 + 1-2((1—1)6 - 1’22(0-1); + 723((:-1)3 4 oeaen

(1)

When the network time constant {1p) is small, the
.higher-order terms become negligible and the equa-
tion for & is written

B ox KO[O + -ra(a-l)é - Taa(u-l)é'] (18)

Within the dead band, the acceleration is
zero and the equation for the jet-on line is written
from equation (18)

8,

KolTo(a-1))

b . 72(;1-3 o3 (19)

The equation for the Je}-oft line is also written
from equation (18)
&, ¢ h

> L 3 ———Ko'rz(a-l) k3 1'0(1) (20)

Thus the transition line is a function of any
torques that might accelerate the body when lead
compensation is used.

When & larger time constant is required in the
compensating network, or if an exact expression is
required for the control quentity &, equations (19)
and (20) do not give satisfactory results. An exact
expression for ® for a step input in the second de-
rivative of the input displacement is derived in
Appendix A. Although the expressiod is expanded for
step inputs in acceleration to the lead network, the
expansion has been done in general terms for step
inputs in the nth derivative by the author and the
end result is contained in Appendix A.

Substituting into equation (F) and rearranging
gives the Jet-off equation

3, ., ¥n
; 1 (1)
MR CEVME JACEY
=
T, 3(1) (L-e 72) (21)

It is seen that equation {21) differs from
equation (20) only by the transient exponential
term. Now, since the elapsed time (t) in the
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transient term can be determined from equation
(14), the jJet-off line can be plotted on the phase
portrait after obtaining a few points by trial and
error. The Jjet-on lines are obtained by allowing
the acceleration term and hysteresis term (h) to
go to zero. Under these conditions, equation (21)
reduces to ‘equation (19). 1In cases where extrane-
ous torques exist, the Jet-on line also shifis,
since the extraneous torques cause the body to
accelerate. Consequently, equation (21) must be
used with the proper megnitude and direction of
the acceleration that results from the extraneous
torques. )

Angular Tmpulde Calculations

The required control energy in this type of
autopilot usually must be kept to a minimum because
of weight and space limitations. This requires
that angular-impulse calculations must be made to
determine the amount of pressurized gas that must
be carried. The required angular impulse is easily
calculated from the phase portrait. The equation
for angular impulse is written

r|F a1 ad
x
Integrating over the elapsed time gives

t

1 % . )
rleldt:If 4o = I_(Ad)
£ x° X

[e] [e]

(22)

Usually the system will fly in the steady-state
dither for nearly the entire flight. Consequently,
the impulse required during steady-state will be of
the greatest import. If tj - tgy is the period of
one cycle of the fundamental steady-state dither,
then A® must be the change in eanguler rate per
cycle. Multiplying hoth sides of equation (22) by
the fundamental frequency (f) of the steady-state
oscillation ylelds an expression for the angular
impulse required per second. It can be seen that,
as (Ad)f approaches a minimum, the total steady-
state impulse does also.

It should be kept in mind at this point that
the objective of this paper was to show that this
type of a control system problem can be nicely
handled using phase-plane portraits. Consequently,
no attempt wes made to come up with an optimized
system. The following discussion indicates the
general trend of system performance as a function
of the control parameters. The optimized system
will then depend first upon the designer's defi-
nition of an optimized control system and, secondly,
upon the ingenuity and skill of the designer in
using the phase-plane method of analysis.

Three examples have been selected to demon-
strate the technique. The results are shown in
figures 4, 5, and 6. Phase portraits plotted
directly from analogue-computer simulation are
included to verify analytical results. The sys-
tem constants and parameters to be used are shown
in table I. Substituting the assigned quantities



