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General Chairman’s Message

Welcome to the 1985 International Conference on Distributed Computing Systems. The design, development,
and deployment of effective distributed computing systems requires the integration of skills from many disciplines
including architecrure, database management, fault rolerance, networks, operating systems, and software, to name
a few. The breadth of the field is so great that this conference was created in 1979 to provide a forum bringing to-
gether interested workers from industry and academia for a week of intense interaction, synergism, and cross-fer-
tilization.

This is the first conference after “annualization.” The change to an annual cycle was made to provide more timely
interaction between workers in this fast-paced field. Now that the conference is on an annual basis, planning
should be simpler: each year the International Conference on Distributed Computing Systems will be held in
mid-May. Perhaps you will want to mark your calendars now for the 1986 conference in Boston. Mike Liu is the
general chairman. Based on my experience in working with Mike over the last several years, I can assure you that
the 1986 conference will be highly professional in all respects.

It is my pleasure to acknowledge the prodigious work of our many “volunteers.” The committee chairs, the pro-
gram committee, and the referges have all given freely of that most precious of all commodities, their time. (Itis
interesting to note that people who are busy always seem willing and able to take on additional tasks.) Please ac-
cept my sincere thanks for jobs well done: we couldn’t have done this without your help. Finally, I extend my
thanks to all participants in the International Conference on Distributed Computing Systems: authors, panelists,
session chairs, and most of all, attendees. You are the greatest!

Earl Swartzlander
General Chairman




§ Preface

This Proceedings of the 1985 International Conference on Distributed Computing Systems is the fifth in the series
of meetings sponsored by the IEEE Computer Soc1ctv Technical Committee on Distributed Processing since Qc-
tober 1979.

The conference received more than 130 submissions from 14 countrics, cach of which was evaluated by three ret-
erces. From these evaluations, 63 papers were selected by the 52-member Program Committee for presentation at
the conference and for inclusion in the Proceedings. It is a great pleasure for me to serve as Program Chairman for
the conference. T am pleased that the conference is upholding the tradition of being a high-quality, trulyv interna-
tional technical meeting.

The technical program is classified into seven subject areas, each of which was handled by a Program Vice-Chair-
man responsible for that area: Architectures, Nerworks, Operating Systems and Languages, Distributed Data-
bases, Fault Tolerance, Performance Evaluation, and Applications. I would like to take this opportunity to thank
the respective Vice-Chairmen, H.C. Torng, Chuan-lin Wu, John A. Stankovic, David Cohen, K.H. (Kane) Kim,
Bill P. Buckles, and Charles J. Graff, for handling the review of papers in their areas. I would also like to express my
sincere appreciation to other members of the Program Committee for assisting the review process, to Bernard P.
Zeigler and Horst F. Wedde for organizing sessions on Models of Distributed Processes, and to Andre van Tilborg
and Edwin C. Foudriat for organizing the two panel sessions.

I would like to acknowledge the tremendous amount of support received from Earl Swartzlander, General Chair-
man, and Charles Vick, Steering Committee Chairman. Many others, including 168 referees who are not members
of the Program Committee, have given freely of their time and expertise. Their names are listed in this Proceed-
ings, but their real satistaction is that their efforts have helped in making this conference a success.

I should like to call to vour artention a special issue of the IEEE Transactions on Computers on distributed com-
putng that will be published in December 1985. All authors of the 63-papers appearing in this Proceedings have
been invited to submit their revised/moditicd/expanded versions for consideration. It is an honor for me to serve as
Guest Editor for this special issue.

Finally, I would like to thank Jack B. Dennis, the winner of the 1984 ACM-IEEE/CS Eckert-Mauchly award for
his contributions to data-flow computer architecture, for accepting our invitation to be the Kevnote Speaker. I

have known Jack for more than 10 vears and have high respect for his technical contributions in many aspects of
computer science and engineering. I trust that you \Vlll enjoy his kevnote address, which is timely and fresh.

Ming T. (Mike) Liu
Program Chairman

g
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THE HUGHES DATA FLOW MULTIPROCESSOR

Rex Yedder, Michae! Campbel!l!, George Tucker

Microelectronics Engineering Laboratory,
Hughes Aircraft Company, Box 902, E! Segundo, CA

ABSTRACT

The Hughes Data Flow Multiprocessor (HDFM)
Project has developed a data flow architecture
and software environment for high performance
signal and data processing. The programming
environment allows applications coding in a
functional high level language called the Hughes

‘Data Flow Language (HDFL). The HDFL is compiled
to a data flow graph form which is then
sutomatically partitioned and distributed to
multiple processing elements. The data flow
architecture consists of many processing elements
connected by a three dimensional bussed-cube
packet routing network. The processing elements
have been designed for implementation in VLSI to
provide !arge throughput resl-time processing for
embedded processor applications. The modular
nature of the computer ailows adding additional
processing elements to meet a range of throughput
and reliability requirement. Simulation results
have demonstrated high performance operation with
high level language programmability,

1.0 INTRODUCTION

The Hughes Data Fiow Multiprocessor (HDFM)
Project began in 1981 prompted by the need for
high performance, reliable, and easily
programmable processors for embedded systems.
VLSI now allows a many-fold increase in the
number of circuits which can be employed within
the small volume and power limitations of the

embedded processor, This has led to the
increased use of paralle! processors to achieve
higher performance. Unfortunately, the use of

parallel processors increases the programming
complexity, requiring an spplications programmer
to partition and distribute his program to
muftiple processors, and to explicitly coordinate
communication between the processors or shared
memory. Applications programming is extremely
expensive even using current single processor
systems and is often the dominant cost of »
-system. The goal of the HDFM Project has been %o
develop @ high performance multi-processor system
which is programmed in a high level language as a
single computer, with the multi-processor
configuration being transparent to the user.
This not only reduces software cost but allows
re-mapping an existing program onto a different

CH2149-3/85/0000/0002501.00©1985 IEEE

numbers of processing elements without re- riting
the program; this is fundamental for fa.t fault
recovery and useful for meebting <changing

real-time performance requirements.

To meet these increasing performance
requirements and reduce growing software costs,
the HFDM Project has daveloped a data fliow
architecture and software environment for high
performance signal and data processing. The
programming environment allows applications
coding in a functional high level language called
HDFL (Hughes Data i low Language). The HDFL s
compi led to a data flow graph form which is then
automatically partitioned and distributed to
multiple processing elements. The data fliow
architecture consists of many processing elements
connected by 8 three dimensional bussed-cube
packet routing network. The processing elements
have been designed for implementation in VLSI teo
provide large throughput real-time processing for
embedded processor appl!ications. The modular
nature of the computer allows adding additional
processing elements to meet a range of throughput
and reliability requirement. Simuletion results
have demonstrated high performance operation with
high level language programmability.

2.0 DATA FLOW ORGLNIZATIDN

Multi-processors can be organized by many

different methods. Data flow control is
particularly attractive because it can express
the full paralielism of a problem and reduce

explicit programmer concern with inter-processor
communication and synchronization. Much work has
been pub!ished on data flow blossoming from the
work started at MIT [Dennis?4). Dur work is
aimed specifically at performing signal
processing problems and the related data
processing functions including tracking, control,
and display processing on the same processor. We
use a micro data flow approach and compile time
assignment of tasks to processing eiements to get
efficient run-time performance.

Data flow, as opposed to the traditional
contro! flow computation model (with program
counter), lets the data depesndencies of a group
of operations determine the sequence in which the
operations may be executed. A data flow graph

i,




represents this information using nodes for the
operations and direcved arcs defining the data
dependencies between these nodes,  which are
called actors. The output result from an actor
1s passed to other actors via data items called
tokens which travel along the arcs.

The actor execution, or firing, occurs when
all of the actor’s input tokens are present on
the actor’s input arcs. When the actor fires, it
consumes the values off its input.arcs, performs
its intended operation and puts the result token

on its output arc(s). When actors are
implemented in an architecture they are called
templates. Each template consists of an opcode,

slots for operands, and destination pointers
which indicate where the results of the operation
should be sent. For a more thorough introduction
to data flow see [Dennis74] [Dennisg0)].

3.0 SOFTWARE ENVIRONMENT

The HDFM is programmed in the Hughes Data
Flow Language (MDFL), which is a functional high
fevel language based on Val [Ackerman79]. We
have developed a compiler which translates from
HOFL to a parallel data flow graph form. This
graph is then distributed to the processing
elements of the multi-processor by a software
tool called the Allocator. The Aliocator employs
static graph analysis to produce a compile-time
assignment of program graph to hardware that
attempts to maximize the number of operations
which can proceed in parallel while minimizing
the inter-processing el!ement communication. The
software environment for the HDFM is shown in
Figure 1. Parallel development of high level
language, compiler, and architecture have allowed
many hardware/software tradeoffs to be studied
resulting in a design which can be efficiently
implemented.

3.1 Hughes Data Flow Language (HDFL)

One of the primary goals of our project was
to provide a2 high level language capability for a
multi-processor system in order to reduce
software cost. This entailed finding a high
level language which could easily express the
paraflelism - irherent in many problems. Current
sequential languages |ike Fortran and Pascal were
elininated because of their inherent lack of
parallelism. Ada and other multi-tasking
languages were rejected because they require
explicit programmer concern with creating and
synchronizing multiple tasks which adds
complexity and cost to software development.
Within a specific process, these languages are
also subject to the same lack of parallelism as
the Fortran-class languages. We determined that
an applicative data flow language such as Val
[¥cGraw82] or Id [Arvind78) was needed to allow
an effective extraction of parailelism and
efficient mapping to multi-processor hardware.
This led to the development of the HDFL.
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Figure 1. The Data Flow Software Environment
Aliows Programming the Data Flow
Processor in High Leve! Language

HDFL is a general purpose high. level
programming language for data flow computers
which is designed to allow full expression of
parallelism. It s an applicative language
[Backus78] but includes the usage of familiar
algebraic  notation and programming language
conventions, HDFL borrows many of its featuras
from Val [McGraw82], a data flow language
developed at MIT.

The language is value oriented, allowing
only single assignment variables. Its features
include strong typing, data structures including
records and arrays, conditionals (IF THEN ELSE),
iteration (FOR), paraile! iteration (FORALL), and
streams. The stream capability is similar to
that used in the ID ianguage [Arvind78]. A HDFL
program consists of a program definition and zero
or more function definitions. There are no
global variables or side effects; values are
passed via parameter passing.




Figure 2 shows 2 simple example of HDFL
which illustrates the flavor of the language.
The example consists of 2 function "foo® which
takes four parameters (one record and three
integers), and returns one record and one

integer. PResult® is a2 key word beginning the
body of a2 function and %endiun® terminates it.
The function body consists of a list of

arbitrarily complex expressions separated by
comnas with one expression per return value. In
this example the first expression in the function
body is 2 "record type constructor® which assigns

values to the fields of the record result. The
conditionza| below it evalvates to an integer
value. Constants and types may be declared

before the function header or before the body.
Functions may be nested.

type xy = record [ x: integer; &: integer ];
constant scalefactor = 2; %This is a comment.

function foo( xyvar:xy; x0,yl,y2:integer
returns xy, integer)

constant offset = 1;

result
xy( xyvar.x + x0, xyvar.y + y1) ,
if yl > y2 #Either branch creates a
single value.
then y2 « scalefactor + offset
else yl + x0
endif
endfun

Figure 2. HDFL Programs are Composed of Functions

3.2 HDFL Comeiler

The compiler transiates HDFL to a data flow
graph intermediate form composed of primitive
data flow actors. Operation proceeds in three
phases -  syntax-checking and  parse tree
construction, semantics-checking and
augmentation, and finally code generation. Each
phase is  table-driven, wusing the Hughes’
Transiation Table Generator [Tucker82] .
Following table-driven code generation is a fina!l
post-processing stage to eliminate un-needed
code, evaluate constant subgraphs, and perform
some optimizations. The graph intermediate form
generated by the compiler includes syntactic
information and other information which is used
by the Aliocator.

The primitive actors are those supported
directly by the hardware. We currently have 39
primitive actors, some with both 16-bit and
32-bit forms. Many are simple arithmetic and
boolean actors such as ADD, others are control
actors such as ENABLE and SWITCH, or hybrids !ike
LES, some are used in function invocation such as
FORWARD, and others are used for array and stream
handling. The five above named actors and their
function are shown in Figure 3.
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Figure 3. The Primitive Actors are Implemented
Directly in Hardware
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For each construct in the  high level
language the compiler has a corresponding data
flow graph composed from the primitive actors
that implements that function. For example, the
data - flow gragh generated from the HDFL
conditional expression, "if yl (= y2 then y2 = 2
+ 1 else y1 + x0 endif” is shown in Figure 4.
The then and else branches of the conditional are
meraed together by sending tokens on these arcs
to the same location; this is indicated by
merging the output arcs together. Note also that
the LES actor has some stub output arcs which are
not used. The ENABLE actor is present so that
when the result of the expression is generated
this guarantees that all acters in the graph have
fired and the graph is available for further use
if desired.

Figure 4. Compiler Generated Data Flow Graph
Corresponding to
if yl (= y2 then y2 = 2 + 1
else yl + xO endif

3.3 Allocator

The Atlocator is a software tool which takes
the data flow graph intermediate form from the
compiler and a description of the number and
configuration of processing elements and assigns
each actor to an actual processing element. Note
that each processing element may have many actors
assigned to it. The Allccator attempts to
satisfy two conflicting goals: (1) maximize the

parallelism of execution in the data flow graph

by assigning actors that can fire in parallel %o
different processing elements, and (2) minimize
the communication traffic betwsen processing
elements by assigning actors that are connected
by arcs to the same processing element.

The Aliocator algorithm works in a divide
and conquer fashion by partitioning the input
graph inte smalier moduies each of which is
assigned to a subset of the processing elements.
The moduies c¢an then be further divided and
assigned to smaller sets of processing elements
until the trivial assignment of an actor or group
of actors to one processing element is made. At
each step, the assignment of modules to

processing elements is guided by heuristic
functions which estimate the communications
overhead and parallelism of different

distributions of actors so that the best
solutions may be selected.

The partitioning algorithm splits up the
data flow graph along boundaries implied by the
syntax of the high leve!l language source code.
To guide this process, the datz flow intermediate
graph form includes the syntactic parse tree from
the compiler. For example, the first step of the
alliocator algorithm is to partition the parse
tree into subtrees which correspond to high level

tanguage functions. Each of these subtrees
corresponds to a module which can then be further
partitioned into still smailer moduies
corresponding to smaller language constructs such
as loop bodies or expressions. Since each -

construct in our language is side-effect free, we
expect this partitioning to achieve good locality
of refercnce and therefore help minimize
inter-processor communication.

4.0 ARCHITECTURE

The HDFM consists of many relatively simple
identical processing elements connected by an
global packet-switching network. The
architecture is designed to be modular and fault
tolerant, and has been targeted for VLSI
implementation. The interconnection network is
integrated with the processing element for ease
of expansion and minimization of VLSI chip types.

4.1 Communications Network

The global interconnection network is a
three dimensional! bussed-cube network as shown in
Figure 5 which implements a fault tolerant
store-and-forward packet switching network. Each
processing element contains queues for storing
packets in the communication network, and the
appropriate control for monitering the health of
the processing elements and performing the packet
routing.
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Figure 5. The Communicaticns Network is a2 Three-Dimensional Bussed Cube Structure
- Pictured is a 3 by 3 by 3 Configuration of Processing Elements

The network is optimized for transmission of
very short packets consisting of a single token.
Each packet consists of a packet type, an
address, and a piece of data. Different types of
packets include normal token packets,
initialization packets, and special control
packets for machine re-configuration control.
The address of each packet consists of a
processing element address and a template address
which points to one particular actor instruction

_within a processing efement. The data can be any
of the aliowed data types of HDFL or contro!
information if the packet is a control packet

The communications network is designed to be
reliable, with automatic retry on garbled
messages, distributed bus arbitration, alternate
path packet routing, and failed processing
element translation tables to allow rapid
switch-in and use of spare processing elements.

The communications network can physically
accomodate up to an 8x8x8 configuration or 512
processing elements. Many signal processing
problems could potentially use this many
processing elements without overloading the bus
capacity because of the ease of partitioning some
of these aigorithms. However, for general data
processing, the bus bandw-dth will begin to
saturate above four processirg elements per bus.
More processing elements can be added and
performance will continue to increase but at
iower efficiency per processing element.

4.2 Processing Element

Each processing element consists of two
parts - the above mentioned communications
functionality and a processing engine which can
perform the primitive actor operations and the

data flow sequencing control. Each processing
element has local memory which is used for
program and data storage; there is no giobal

memory. The processing element has been targeted
for VLSI implementation and consists of two

custom chips - a communications chip and a
processor chip - and some commercialiy available
memory parts. This organization is shown in
Figure 6.

The communications chip receives packets
from the routing network and either forwards them
on to other processing elements or sends them to
the processor chip. When the processor chip
receives a packet, it checks if this token has
enabled a template to fire. If so, the operands
and opcode for this template are sent to the ALU.
The ALU will perform the indicated operation and
send the result to be matched with its
destination address and sent eithsr back to this
same processing element or out into the routing
network.
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