mat__i;onal' Gonference on

UTED COMPUTING

The 5th International
Conferenceon

DISTRIBUTE

* i _Jde i d 3 ik Do o
O a TG
»““x ~ ,
B Denver, Colorado

i ‘ May 13-17, 1985

SPONSORED BY

Moot ot g o

(D) 'EEE COMPUTER SOCIETY

A
(® THE INSTITUTE OF ELECTRICAL AND
M-f\/qB"‘ ELECTRONICS ENGINEERS. 1NC.

In cooperation with
Association for f \}
Computing Machinery (ACM; { @CITY
nformation Processing

ociety of Japan (IPSJ)

nstitut National de

echerche en Informatique
et en Automatique (INRIA)

ISBN 0-8186-0617-7
’ IEEE Catalog Number 85CH2149-3
T Library of Congress Number 85-60194
/ (7 k IEEE Computer Society Order Numtier 617

CCrMPBPUTER
SCCIETY q)
PRESS

e e e i i i i R --—-7 5~d 1 Q 6

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without change,
in the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, IEEE Computer Society Press, or the Institute of Electrical and Electronics
Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street
Suite 300
Silver Spring, MD 20910

'“\%\\ | ..?
Uooxie 2

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01870. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing Serv-
ices. IEEE, 3456 E. 47 St., New York, NY 10017. All rights reserved. Copyright @ 1985 by The Institute
of Electrical and Elecironics Engineers, Inc.

ISBN 0-8186-0617-7 (paper)
ISBN 0-8186-4617-9 (microfiche)
ISBN 0-8186-8617-0 (casc)
IEEE Catalog Number 85CH2149-3
Library of Congress Number 85-60194
IEEE Computer Socicty Order Number 617

Order from: IEEE Computer Society IEEE Service Center
Post Office Box 80452 445 Hoes Lane
Worldway Postal Center Piscataway, NJ 08854

Los Angeles, CA 90080

» THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

Yo

AN

General Chairman’s Message

Welcome to the 1985 International Conference on Distributed Computing Systems. The design, development,
and deployment of effective distributed computing systems requires the integration of skills from many disciplines
including architecrure, database management, fault rolerance, networks, operating systems, and software, to name
a few. The breadth of the field is so great that this conference was created in 1979 to provide a forum bringing to-
gether interested workers from industry and academia for a week of intense interaction, synergism, and cross-fer-
tilization.

This is the first conference after “annualization.” The change to an annual cycle was made to provide more timely
interaction between workers in this fast-paced field. Now that the conference is on an annual basis, planning
should be simpler: each year the International Conference on Distributed Computing Systems will be held in
mid-May. Perhaps you will want to mark your calendars now for the 1986 conference in Boston. Mike Liu is the
general chairman. Based on my experience in working with Mike over the last several years, I can assure you that
the 1986 conference will be highly professional in all respects.

It is my pleasure to acknowledge the prodigious work of our many “volunteers.” The committee chairs, the pro-
gram committee, and the referges have all given freely of that most precious of all commodities, their time. (Itis
interesting to note that people who are busy always seem willing and able to take on additional tasks.) Please ac-
cept my sincere thanks for jobs well done: we couldn’t have done this without your help. Finally, I extend my
thanks to all participants in the International Conference on Distributed Computing Systems: authors, panelists,
session chairs, and most of all, attendees. You are the greatest!

Earl Swartzlander
General Chairman

§ Preface

This Proceedings of the 1985 International Conference on Distributed Computing Systems is the fifth in the series
of meetings sponsored by the IEEE Computer Soc1ctv Technical Committee on Distributed Processing since Qc-
tober 1979.

The conference received more than 130 submissions from 14 countrics, cach of which was evaluated by three ret-
erces. From these evaluations, 63 papers were selected by the 52-member Program Committee for presentation at
the conference and for inclusion in the Proceedings. It is a great pleasure for me to serve as Program Chairman for
the conference. T am pleased that the conference is upholding the tradition of being a high-quality, trulyv interna-
tional technical meeting.

The technical program is classified into seven subject areas, each of which was handled by a Program Vice-Chair-
man responsible for that area: Architectures, Nerworks, Operating Systems and Languages, Distributed Data-
bases, Fault Tolerance, Performance Evaluation, and Applications. I would like to take this opportunity to thank
the respective Vice-Chairmen, H.C. Torng, Chuan-lin Wu, John A. Stankovic, David Cohen, K.H. (Kane) Kim,
Bill P. Buckles, and Charles J. Graff, for handling the review of papers in their areas. I would also like to express my
sincere appreciation to other members of the Program Committee for assisting the review process, to Bernard P.
Zeigler and Horst F. Wedde for organizing sessions on Models of Distributed Processes, and to Andre van Tilborg
and Edwin C. Foudriat for organizing the two panel sessions.

I would like to acknowledge the tremendous amount of support received from Earl Swartzlander, General Chair-
man, and Charles Vick, Steering Committee Chairman. Many others, including 168 referees who are not members
of the Program Committee, have given freely of their time and expertise. Their names are listed in this Proceed-
ings, but their real satistaction is that their efforts have helped in making this conference a success.

I should like to call to vour artention a special issue of the IEEE Transactions on Computers on distributed com-
putng that will be published in December 1985. All authors of the 63-papers appearing in this Proceedings have
been invited to submit their revised/moditicd/expanded versions for consideration. It is an honor for me to serve as
Guest Editor for this special issue.

Finally, I would like to thank Jack B. Dennis, the winner of the 1984 ACM-IEEE/CS Eckert-Mauchly award for
his contributions to data-flow computer architecture, for accepting our invitation to be the Kevnote Speaker. I

have known Jack for more than 10 vears and have high respect for his technical contributions in many aspects of
computer science and engineering. I trust that you \Vlll enjoy his kevnote address, which is timely and fresh.

Ming T. (Mike) Liu
Program Chairman

g

Fiftny Irternational Conferance

General Chairman
Earl Swarzzlander, TRV

Standing Committee Chairiman
Charlee Ho VickoAubern Univessin

International Associate Chairman
H.J. Swegel. Prvde Universiry
Helmue Kerner, Armstria

RCT. Lee, Tanwasn

Gerard Lel.ann., France

Soichi Nogucht. Japan

Marta Giovanna Sama, Irals

Sigran Sciundler. Gemrany

GJL Sty Netberlandds

CM. Woodside, Canada

Professional Socicties Liaison
Larey D Wattiel SUNTY Stony Brooi

Publicity

S Dhane Smith, Lawrence Livermore Labs

Local Arrangements
Tohn Poltwmus, Compurer Techmslory Associnres

Treasurer
Leah Jamiieson, Pradue Universin

Awards Chairman
C.V. Ram.lmunrthy, Unirersity of Califernia, Bevkeley

Tutorial Chairman
Trov Nagle. Universiry of Nowth Carolina

Program Chairman
Ming T. Liu, Ohie State Unsrersin

Special Publications Chairman
Stephen F. Lundstrom. Stantoid Untversiry

Vice Chairman
Architectures
H C Torng. Comc T Univeraary

Menn Fervane . 7T [aborrrorses

Brvan Lave oo o cuer {irmanere [aimeatory
Hungwen 11 { Waseon Reseandds Center
Warren A M. Cee AT Beil 1l

Rang G Shon & v of achigan
David Tyon, IBM Ao

puted Computing Systems

Vice Chairman

Operating Svstems and Languages

Tobka AL stankovie, Uniressity of Massachuscers

Rav Camphell. Unversity of Liinois

Domenteo Ferrari, Universiey of California, Bevbeley
John K. Gallant, ATET Bell Labs

Martin McKendry. Georgia Instirate of Technolony

Tames MoGraw., Lawrence Livermore National Labovatory
Al Spector, Camicate-Mellon University

Vice Chairman

Distributed Databases

David Cohen, Teknekvon Infaswitch

Daniel H. Fishman, HP? Labs

Hector Garaia-Molina, Pranceton University
Donald F. Havden, Jo., ATST Inforsnation Svstem
Gudeon Lidor. ATCT Bell Labs

Tane W.S. L, University of Llinors

Manda B. Surv, Lockheed

Vice Chairman

Networks

Chuan-lin Wu, Unsversity of Tevas, Austin

Dherma . Agrawal, Novth Carolina State University
Paul D Amer, Unirvessiey of Delaware

MG, Gouda, Untrersity of Texas, Austin

Robert J. McMillen, Hushes Aiveraft

Rachard Y. Oh AT ST Bedl Labs

7vovnko G. Vreanesie, University of Toronto

ice Chairman
Fault Tolerance

K.H. (Kane) Kim. Uneversity of Sosth Flovida
Torm Anderson, University of Newcastle Upon Tvne
Ed C. Foudriat, NASA Langley Resecarch Center
Herbert Hecht, SoHaR, Ine,

H. Kopetz, Technische Universitaet Wien

Zary Segall. Carnegie-Mellon Untversity

Raif M. Yannev, TRW

Vice Chairman

Performance Evataation

Bul . Buckles. Unevervity of Texas, Avlingron
Wairer H. Kohler, Universtty af Massachuserts
Michael Ko Mollov, Univeniry of Texas, Atestin
Charles H. Sauer. /BM Austin

Vaul Spirakis, New York Usdversiry

Kishor Trivedi. Duke University

Rernard I, Zewgler, Wavne Stare University

Vice Chairman

Applications

Charles J. Graff. U'S. Ay CECOM

Angus Andrews. Rockiwell International

Henry Chuang, University of Pitesburals
Ravimond Liuzzi, Rowie Air Development Center
Fred Petev. Tulane Usidversity

Dierdek Morvis. Stevens Institute of Teelmolugy
Peter Ao Ng. University of Missour

Paul Schneck, Office of Nava’ Rescavch

Normar ¥ Schneidewind. Naval Postaraduare Sciool

Amir Abduclnaga
George B. Adam I
Adarsh K. Arora
Dusham Badel
Daniel Barbara
Andrew G. Barto
Peter Bates

Marc Beacken
Geneva Belford
Mark Benard

I.N. Bhuvan

Paul Blackwell
Joshua Biock

Kevin W. Bowver
Opal A. Brass

Jeff Brumficld

John Bruner

L.E. Cabrera

David A. Carlson
Chung-Kuo Chang
Dah-Ming Chin
Ching-Hua Chow
Ey-Chih Chow
Arturo I. Concepcion
Eric Cooper
Richardo S. Cordori
Dean Daniels
Nathaneil J. Davis IV
A.D. Dehkordi
Nigel Derett
Laurie Dillon

Perry Emrath

N.M. Endo

James C. Ferraus
Eric Fiene

Victor Franco
James L. Frankel
Bruce Galler
Robert Geist

Jack Goldberg
Houssam A. Halabi
Allan W. Haley, Jr.

List of Referees

Altred C. Hartmann
Al Hayashi

John P. Hayes
William R. Hawe
Michael T. Heins
John H. Holland
Victor Hom

Pei Hsia

Edward Hunter
Ronald R. Hutchins
S.M. Jacobs

Sushil Jajodia
Pankaj Jalote

M. Jameel

Roberto R. Kampthner
Krishna M. Kavi
Robert Keller

Jack Kent

Aaron Kershenbaum
H. Khalil

Robert E. Kinichi
Hank Korth

C.M. Krishna

M. Krishna

Clyde Kruskal
Manoj Kumar
Ming-Yee Lai
Simon S. Lam
Richard LeBlanc
Insup Lee
Yann-Hang Lee
Ernest W. Leggett, Jr.
Dennis Leinbaugh
Steven Leviton
Richard C. Lian
Woei Lin

An-Chi Liu

John Lohse

Frank Luk
Anthony V. Ma
Katie Macrander
Miro Malek

Robert Marti

Bill McDonald
David McNabb
James McSkimin
Sherrt Mences

Jai Menon

Bare Miller

Mike Minnich
Toshimi Minoura
J.H. Mirza

Joe Mohan

Clifton L. Moss, Jr.
Nicolas J. Multan
N. Natarajan
Victor P. Nelson
Viadimir Nepustil
James W. Nippert
Dan O’Donnell
Ron Olsson

S Ong

M. Ossefort
Mourad Qulid-Aissa
Susan S. Owicki
B.K. Padmanabhan
Janak H. Patel
Randy Pausch
Lynn L. Peterson
G.F. Pfister

Frank M. Pirtelli
D.K. Pradhan
Russell A. Purzke
C.S. Raghavendra
K.K. Ramakrishnan
Krith Ramamritham
Brain Randel!
Daniel A. Reed
Anthony Reeves
Robert G. Reynolds
Mark Riley
Marshall Rose
Robert Rosenthal
L. Rosier

vi

J. Rozenblit

Reobin Sahner
A.R.K. Sastry
Prashant S. Sawkar
T. Savdam

Frank Schatta

Fred B. Schneider
Edmond Schonberg
Peter Schwarz,
Robert Seban

AL Scthi

Amit Sheth

Edward N. Shipley
S.K. Shrivastava
Timothy M. Sigmon
Luca Simongini
Adit D. Singh
Anoop Singhal

Stephen K. Skedzielewsdi

S. Diane Smith
Todd Smith

Arthur Sorkin
Eugene Spafford
Clyde H. Springen
R.J. Stroud

N.K. Swain
Kamaal Thadant
K.S. The

Wilham C. Thibault
L. David Umbaugh
James H. Vellenga
M.K. Vernon
Stephen T. Vinter

Consrantin von Altrock

A. vou Mavrhauser
Ben Wah

Horst Wedde

Jack Wileden

John Wilkes

Scung Ming-Yang
Pen-Chung Yew
Songman Zhou

Table of Contents

General Chairman’s MesSage.vuuiiiii ittt it i it i
Pre . . o e e

Session 1A: Data Flow Systems (H.C. Torng, Chairman)

TheHughcsDataFlowMultiprocessor................................j‘ 2
R. Vedder, M. Campbell, and G. Tucker
Toward a Hybrid Data-Flow/Control-Flow MIMD Architecture.ooouuiviiiii i .. 10

D. Klappholz, Y. Liao, D.-]. Wang, A. Brodsky, and A. Omondi

Fault-Tolerance and Data-Flow SYStems.ouuuti i e 16
J.L. Gaudiot and C.S. Raghavendra

Session 1B: Distributed Operating systems (J.A. Stankovic, Chairman)

Hierarchical Process Composition in Distributed Operating Systems. 26
T.]. LeBlanc and S.A. Friedberg

Meglos: An Operating System for a Multiprocessor Environment. 35
R.D. Gaglianello and H.P. Katseff

A Distributed Programs Monitor for Berkeley UNIX.........o 43

B.P. Miller, C. Macrandey, and S. Sechrest
Session 2A: Channel Access Protocols (R.Y. Oh, Chairman)

TSPS: A Token-Skipping Priority Scheme for Bus Networks.o.o . 56
A.P. Jayasumana and P.D. Fisher
Performance Analysis of the Adaptive Multiple Access Protocol ATP-2.............. ... 64

SA. Konbias and G D. Papadepoulos

A Microeconomic Approach to Decentralized Optimization of Channel Access
Policies in Multiaccess Networks.o e 70
J.E. Kurose, M. Schwartz, and Y. Yemini

Session 2B: Interprocess Communication (W.H. Kohler, Chairman)

Multicast Communication in UNIX™ 4.2BSD......................... P 80
M. Abamad and A]. Bernstein

Protection for Communication and Sharing in a Personal Computer Network. 88
R.B. Dannenbery

Implementation and Performance of Pipes in the V-System., 99
W. Zwaenepoel

Session 3A: Communication Protocols (M.G. Gouda, Chairman)

Broadcasting Source-Addressed Messages. T 108
R. Gueth,]. Kriz, and S. Zueger

A Failure Detection and Notification Protocol for Distributed Computing Systems.............. 116
S.A. Bruso

Network Partitioning and Symmetric Surveillance Protocols. 124

B. Walter

vii

Session 3B: Distributed Programming (J. McGraw, Chairman)

Svstems Programming with Objects and Acions.o 132
R.J. LeBlanc and C.T. Wilkes

A Micro-Kernel for Distributed Applications. i 140
R. Bagrodia and K.M. Chandy

MIMD Algorithm Analysis: Low Level Algorithm Descriptions.cocoiiiiiiia. .. 150

K.D. Smnith and L.H. Jamicson

Session 4A: Interconnection Networks (C.-1. Wu, Chairman)

A Kind of Interconnection Network with Mixed Static and Dynamic Topologies. 160
L. Jinand7. Pan
Existence and Optimizat on of Rearrangeable Networks. ...l 167

T.-y. Feng and W. Young
Analysis of Partitionability Propertics of Topologically Arbitrary Interconnection

R.R. Se¢ban and H J. Sicgel
Session 4B: Distributed Database Design Concepts (D.H. Fishman, Chairman)

Atomic Actions i CONCUTTENT SYSTEIMIS. o1ttt vt et anieaanereenenins 184
P. Jalote and R.H. Campbell

Approaching Distributed Database Implementations through Functional

Programming COncePts.oo i i i i i 192

R.M. Keller and G. Lindstrom

Distributed Data Structures: ACase Study. 201
C.S. Ellis

Session 5A: Fault-Tolerant Interconnection (H. Hecht, Chairman)

On Multipath Multistage Interconnection Networks. ..., 210
S.M. Reddy and V.P. Kumar

Fault Diagnosis of Multistage Interconnection Networks with Four Valid States................. 218
T.«y. Feng and Q. Zhang '

Design of a “T” Fault Repairable Multiprocessor System. ... 227

J.S.R. Subrabmanium, P.P. Chaudhuri, and P.P. Chaudhuri
Session 5B: Distributed Concurrency Control (G. Lidor, Chairman)

An Optimistic Concurrency Control Mechanism for an Object Based Distributed

N (s 1+ 236
F.F. Ghertal and S. Mamrak
Concurrency Control Mechanism for a Fault Tolerant Distributed Database System. U 246
J.-M. Fenvre
Performance Comparison of Distributed vs. Centralized Locking Algorithms in
Distributed Databasc Systems. 254
M.T. Ozsu ,
Session 6A: Multiprocessor Systems (M. Feridum, Chairman)
Network Facility for a Reconfigurable Computer Architecture. i, 264
M. Lee, E. Fiene, C.-l. Wau, G. Brown, and N. Bagherzadch
**Programming EGPA Systems. o 272
W. Henning and J. Volkert .
Task Division and Multicomputer Systems. oot 273

G.C. Pathak and D.P. Agrawal

viit

Session 6B: Distributed Query Processing (M.B. Sury, Chairman)

Dynamic Task Allocation in a Distributed Database Svstem............................... .. 282
M.]J. Carey, M. Livny, and H. Lu

A Mixed-Flow Query Processing Strategy for a Multiprocessor Database Machine. 292
W.W. Armstrong and A.S. Mohamed '

Query Transformation in Heterogencous Distributed Database Svstems. e 300

M. Rusinkiewicz and B. Czefdo

Session 7A: Resource Allocation (B.P. Buckles, Chairman)

Automating Resource Allocation for the Cm* Multiprocessor. PR 310
K. Schwan and C. Gatmon :

The Processor Number-Power Tradeoff in a Class of Multiprocessors. 321
K.G. Shin and CM. Krishna

Task Assignment to Minimize Completion Time.o P 329
V.M. Lo '

Session 7B: Performance Studies (P.D. Amer, Chairman).

File Transfer in Local-Area Networks: A Performance Study...................... RN 338

B. Meister, P. Janson, and L. Svobodova

The Performance of a Concurrency Control Mechanism That Exploits Scmantic

Knowledge.o e 350
R. Cordon and H. Garcia-Molina
The LOCO Approach to Distributed Task Allocation in AIDA by Verdi........................ 359

V.M. Milutinovic,] J. Crukovic, L.-Y. Chang, and H J. Siegel
Session 8: Panel Discussion (A. van Tilborg, Chairman)
Session 9A: Fault-Tolerant Networks (R.M. Yanney, Chairman)
Fault Reconfiguration for the Near Neighbor Problem in a Distributed MIMD

Environment. 372
M.U. Uyar and A.P. Reeves
Fail-Softness Analysis of Tree-Based Local Arca Networks.oooiiieii i 380
V. Cherkassky, M. Malek, and G.J. Lipovski
Local Reconfiguration of Management Trees in Large Networks.oo.oooiieoiiiiin. ... 386

C.K. Mohan and L.D. Wittie
Session 9B: Program Verification (P.A. Ng, Chairman)

Modular Verification of Distributed Systems. e 396
R.M. Nemes ' ‘

Verification of Non-Terminating Concurrent Programs.ooooviiiiiiiiii. .. 411
E. Chang

A Remark on Distributed Termination.ooiiiiiiii i 416

E.L. Lozinskii
Session 10A: Software Approach to Fault Tolerance (K.H. Kim, Chairman)

A Distributed Process Manager with Transparent Continuation.oeueenneo.... 422
J. Gair .

Some Fault-Tolerant Aspects of the CHORUS Distributed System.c..vvuvvvvnnn... 430
J.S. Banino,].C. Fabre, M. Guillemont, G. Morisset, and M. Rozier

Fault Recovery of Triplicated Software on the Intel IAPX 432...............oocceiiiia.., 438

X.-Z. Yang, G. York, W.P. Birmingham, and D.P. Siewiorck

ix

Session 10B: Distributed Applications Algorithms (C.J. Graff, Chairman)

DIB--A Distributed Implementation of Backtracking. ... 446
R. Finkel and U. Manber

Controlling Speculative Computation in a Parallel Functional Programming

Language. e e 453
F.W. Burton
A Near-Opumal Algorithm for Finding the Median Distributively. ..o oo 459

F. Chin and HF. Ting
Session 11A: Models of Distributed Processes (B.P. Zeigler, Chairman)

Towards a Theory of Adaptive Computer ArchiteCtures.oveveniiin iy 468
B.P. Zeigler and R.G. Reynolds
A Formal Basis for Correct Implementations. of Distributed Programming Languages............ 476
. H.F. Wedde '
Exhibited-Behaviour Equivalence and Organizational Abstraction in Concurrent
System Design. e .. 486

F. De Cindio, G. De Michelss, L. Pomello, and C. Simone
Session 11B: Distributed Debugging and Monitoring (H. Chuang, Chairman)

IDD: An Interactive Distributed Debugger. ... o i 498
P.K. Harter, Jr., D.M. Heimbigner, and R. King

An Approach to Concurrent Systems Debugging. Ll e 507
M.E. Garcia and W.J. Berman

Event-Driven Monitoring of Distributed Programs.................... e 515
RJ. LeBlanc and A.D. Robbins

Session 12A: Distributed Control Algorithms (J.K. Gallant, Chairman)

Decentralized Access Control in a Distributed System.oociiiiii i, 524
K. Ramamyritham, D. Stemple, and S. Vinter _

Distributed Control through Task Migration via Abstract Networks. 532
C. Betowrne, M. Filali, G. Padiou, and A. Sayah

Drafting Algorithm--A Dynamic Process Migration Protocol for Distributed Systems............ 539

L.M. Ni, C.-W.Xu, and T .B. Gendrean

" Session 12B: Panel Discussion: Debugging in Distributed Systems
(E.C. Foudriat, Chairman) '

Debugging in Distributed SYStems.o i e 548
E.C. Foudriat '

Time Management for Debugging Distributed Systems.o 549
L. Wittie and R. Curtis : :

Late Paper.o e e 551

Author Index. o 560

**This paper appears on page 552.

Session 1A
Data Flow Systems

Chairman

H.C. Torng

8750196

THE HUGHES DATA FLOW MULTIPROCESSOR

Rex Yedder, Michae! Campbel!l!, George Tucker

Microelectronics Engineering Laboratory,
Hughes Aircraft Company, Box 902, E! Segundo, CA

ABSTRACT

The Hughes Data Flow Multiprocessor (HDFM)
Project has developed a data flow architecture
and software environment for high performance
signal and data processing. The programming
environment allows applications coding in a
functional high level language called the Hughes

‘Data Flow Language (HDFL). The HDFL is compiled
to a data flow graph form which is then
sutomatically partitioned and distributed to
multiple processing elements. The data flow
architecture consists of many processing elements
connected by a three dimensional bussed-cube
packet routing network. The processing elements
have been designed for implementation in VLSI to
provide !arge throughput resl-time processing for
embedded processor applications. The modular
nature of the computer ailows adding additional
processing elements to meet a range of throughput
and reliability requirement. Simulation results
have demonstrated high performance operation with
high level language programmability,

1.0 INTRODUCTION

The Hughes Data Fiow Multiprocessor (HDFM)
Project began in 1981 prompted by the need for
high performance, reliable, and easily
programmable processors for embedded systems.
VLSI now allows a many-fold increase in the
number of circuits which can be employed within
the small volume and power limitations of the

embedded processor, This has led to the
increased use of paralle! processors to achieve
higher performance. Unfortunately, the use of

parallel processors increases the programming
complexity, requiring an spplications programmer
to partition and distribute his program to
muftiple processors, and to explicitly coordinate
communication between the processors or shared
memory. Applications programming is extremely
expensive even using current single processor
systems and is often the dominant cost of »
-system. The goal of the HDFM Project has been %o
develop @ high performance multi-processor system
which is programmed in a high level language as a
single computer, with the multi-processor
configuration being transparent to the user.
This not only reduces software cost but allows
re-mapping an existing program onto a different

CH2149-3/85/0000/0002501.00©1985 IEEE

numbers of processing elements without re- riting
the program; this is fundamental for fa.t fault
recovery and useful for meebting <changing

real-time performance requirements.

To meet these increasing performance
requirements and reduce growing software costs,
the HFDM Project has daveloped a data fliow
architecture and software environment for high
performance signal and data processing. The
programming environment allows applications
coding in a functional high level language called
HDFL (Hughes Data i low Language). The HDFL s
compi led to a data flow graph form which is then
automatically partitioned and distributed to
multiple processing elements. The data fliow
architecture consists of many processing elements
connected by 8 three dimensional bussed-cube
packet routing network. The processing elements
have been designed for implementation in VLSI teo
provide large throughput real-time processing for
embedded processor appl!ications. The modular
nature of the computer allows adding additional
processing elements to meet a range of throughput
and reliability requirement. Simuletion results
have demonstrated high performance operation with
high level language programmability.

2.0 DATA FLOW ORGLNIZATIDN

Multi-processors can be organized by many

different methods. Data flow control is
particularly attractive because it can express
the full paralielism of a problem and reduce

explicit programmer concern with inter-processor
communication and synchronization. Much work has
been pub!ished on data flow blossoming from the
work started at MIT [Dennis?4). Dur work is
aimed specifically at performing signal
processing problems and the related data
processing functions including tracking, control,
and display processing on the same processor. We
use a micro data flow approach and compile time
assignment of tasks to processing eiements to get
efficient run-time performance.

Data flow, as opposed to the traditional
contro! flow computation model (with program
counter), lets the data depesndencies of a group
of operations determine the sequence in which the
operations may be executed. A data flow graph

i,

represents this information using nodes for the
operations and direcved arcs defining the data
dependencies between these nodes, which are
called actors. The output result from an actor
1s passed to other actors via data items called
tokens which travel along the arcs.

The actor execution, or firing, occurs when
all of the actor’s input tokens are present on
the actor’s input arcs. When the actor fires, it
consumes the values off its input.arcs, performs
its intended operation and puts the result token

on its output arc(s). When actors are
implemented in an architecture they are called
templates. Each template consists of an opcode,

slots for operands, and destination pointers
which indicate where the results of the operation
should be sent. For a more thorough introduction
to data flow see [Dennis74] [Dennisg0)].

3.0 SOFTWARE ENVIRONMENT

The HDFM is programmed in the Hughes Data
Flow Language (MDFL), which is a functional high
fevel language based on Val [Ackerman79]. We
have developed a compiler which translates from
HOFL to a parallel data flow graph form. This
graph is then distributed to the processing
elements of the multi-processor by a software
tool called the Allocator. The Aliocator employs
static graph analysis to produce a compile-time
assignment of program graph to hardware that
attempts to maximize the number of operations
which can proceed in parallel while minimizing
the inter-processing el!ement communication. The
software environment for the HDFM is shown in
Figure 1. Parallel development of high level
language, compiler, and architecture have allowed
many hardware/software tradeoffs to be studied
resulting in a design which can be efficiently
implemented.

3.1 Hughes Data Flow Language (HDFL)

One of the primary goals of our project was
to provide a2 high level language capability for a
multi-processor system in order to reduce
software cost. This entailed finding a high
level language which could easily express the
paraflelism - irherent in many problems. Current
sequential languages |ike Fortran and Pascal were
elininated because of their inherent lack of
parallelism. Ada and other multi-tasking
languages were rejected because they require
explicit programmer concern with creating and
synchronizing multiple tasks which adds
complexity and cost to software development.
Within a specific process, these languages are
also subject to the same lack of parallelism as
the Fortran-class languages. We determined that
an applicative data flow language such as Val
[¥cGraw82] or Id [Arvind78) was needed to allow
an effective extraction of parailelism and
efficient mapping to multi-processor hardware.
This led to the development of the HDFL.

HIGH LEVEL LANGUAGE

IFI=2THENX +5
ELSE X +10

COMPILER

DATA FLOW GRAPH

=

DATA FLOW
PROCESSOR
i DESCRIPTION
FILE
L ALLOCATOR]

Xo-oRfo—
I

PE

ALLOCATED DATA
FLOW GRAPH

DATA FLOW
PROCESSOR ¢

]

L
Ll

Figure 1. The Data Flow Software Environment
Aliows Programming the Data Flow
Processor in High Leve! Language

HDFL is a general purpose high. level
programming language for data flow computers
which is designed to allow full expression of
parallelism. It s an applicative language
[Backus78] but includes the usage of familiar
algebraic notation and programming language
conventions, HDFL borrows many of its featuras
from Val [McGraw82], a data flow language
developed at MIT.

The language is value oriented, allowing
only single assignment variables. Its features
include strong typing, data structures including
records and arrays, conditionals (IF THEN ELSE),
iteration (FOR), paraile! iteration (FORALL), and
streams. The stream capability is similar to
that used in the ID ianguage [Arvind78]. A HDFL
program consists of a program definition and zero
or more function definitions. There are no
global variables or side effects; values are
passed via parameter passing.

Figure 2 shows 2 simple example of HDFL
which illustrates the flavor of the language.
The example consists of 2 function "foo® which
takes four parameters (one record and three
integers), and returns one record and one

integer. PResult® is a2 key word beginning the
body of a2 function and %endiun® terminates it.
The function body consists of a list of

arbitrarily complex expressions separated by
comnas with one expression per return value. In
this example the first expression in the function
body is 2 "record type constructor® which assigns

values to the fields of the record result. The
conditionza| below it evalvates to an integer
value. Constants and types may be declared

before the function header or before the body.
Functions may be nested.

type xy = record [x: integer; &: integer];
constant scalefactor = 2; %This is a comment.

function foo(xyvar:xy; x0,yl,y2:integer
returns xy, integer)

constant offset = 1;

result
xy(xyvar.x + x0, xyvar.y + y1) ,
if yl > y2 #Either branch creates a
single value.
then y2 « scalefactor + offset
else yl + x0
endif
endfun

Figure 2. HDFL Programs are Composed of Functions

3.2 HDFL Comeiler

The compiler transiates HDFL to a data flow
graph intermediate form composed of primitive
data flow actors. Operation proceeds in three
phases - syntax-checking and parse tree
construction, semantics-checking and
augmentation, and finally code generation. Each
phase is table-driven, wusing the Hughes’
Transiation Table Generator [Tucker82] .
Following table-driven code generation is a fina!l
post-processing stage to eliminate un-needed
code, evaluate constant subgraphs, and perform
some optimizations. The graph intermediate form
generated by the compiler includes syntactic
information and other information which is used
by the Aliocator.

The primitive actors are those supported
directly by the hardware. We currently have 39
primitive actors, some with both 16-bit and
32-bit forms. Many are simple arithmetic and
boolean actors such as ADD, others are control
actors such as ENABLE and SWITCH, or hybrids !ike
LES, some are used in function invocation such as
FORWARD, and others are used for array and stream
handling. The five above named actors and their
function are shown in Figure 3.

ADD ENABLE

Vi V2 Vi V2

R, D1 D2
Re— V1 +V2 ’ Die—V1
D2=-V2
SWITCH

P v

TF F

IF P THEN Ta—V

ELSEF=—vV
LES
IF VI <= v2 Vi v2
THEN Be—TRUE,
Tie-V1,
T2e-V2
ELSE Bw- FALSE,
Fla-v1,
F2e-V2 8 £2
T . f T2
FORWARD

v A

ACK

VIS SENT TO ADDRESS A
ACKe—V

Figure 3. The Primitive Actors are Implemented
Directly in Hardware

i

4

<5

—

e o

e N

For each construct in the high level
language the compiler has a corresponding data
flow graph composed from the primitive actors
that implements that function. For example, the
data - flow gragh generated from the HDFL
conditional expression, "if yl (= y2 then y2 = 2
+ 1 else y1 + x0 endif” is shown in Figure 4.
The then and else branches of the conditional are
meraed together by sending tokens on these arcs
to the same location; this is indicated by
merging the output arcs together. Note also that
the LES actor has some stub output arcs which are
not used. The ENABLE actor is present so that
when the result of the expression is generated
this guarantees that all acters in the graph have
fired and the graph is available for further use
if desired.

Figure 4. Compiler Generated Data Flow Graph
Corresponding to
if yl (= y2 then y2 = 2 + 1
else yl + xO endif

3.3 Allocator

The Atlocator is a software tool which takes
the data flow graph intermediate form from the
compiler and a description of the number and
configuration of processing elements and assigns
each actor to an actual processing element. Note
that each processing element may have many actors
assigned to it. The Allccator attempts to
satisfy two conflicting goals: (1) maximize the

parallelism of execution in the data flow graph

by assigning actors that can fire in parallel %o
different processing elements, and (2) minimize
the communication traffic betwsen processing
elements by assigning actors that are connected
by arcs to the same processing element.

The Aliocator algorithm works in a divide
and conquer fashion by partitioning the input
graph inte smalier moduies each of which is
assigned to a subset of the processing elements.
The moduies c¢an then be further divided and
assigned to smaller sets of processing elements
until the trivial assignment of an actor or group
of actors to one processing element is made. At
each step, the assignment of modules to

processing elements is guided by heuristic
functions which estimate the communications
overhead and parallelism of different

distributions of actors so that the best
solutions may be selected.

The partitioning algorithm splits up the
data flow graph along boundaries implied by the
syntax of the high leve!l language source code.
To guide this process, the datz flow intermediate
graph form includes the syntactic parse tree from
the compiler. For example, the first step of the
alliocator algorithm is to partition the parse
tree into subtrees which correspond to high level

tanguage functions. Each of these subtrees
corresponds to a module which can then be further
partitioned into still smailer moduies
corresponding to smaller language constructs such
as loop bodies or expressions. Since each -

construct in our language is side-effect free, we
expect this partitioning to achieve good locality
of refercnce and therefore help minimize
inter-processor communication.

4.0 ARCHITECTURE

The HDFM consists of many relatively simple
identical processing elements connected by an
global packet-switching network. The
architecture is designed to be modular and fault
tolerant, and has been targeted for VLSI
implementation. The interconnection network is
integrated with the processing element for ease
of expansion and minimization of VLSI chip types.

4.1 Communications Network

The global interconnection network is a
three dimensional! bussed-cube network as shown in
Figure 5 which implements a fault tolerant
store-and-forward packet switching network. Each
processing element contains queues for storing
packets in the communication network, and the
appropriate control for monitering the health of
the processing elements and performing the packet
routing.

PLANE
0

/;me

PLANE

PLANE /

o
ANE
‘///// 1/0 CONTROLLERS

Figure 5. The Communicaticns Network is a2 Three-Dimensional Bussed Cube Structure
- Pictured is a 3 by 3 by 3 Configuration of Processing Elements

The network is optimized for transmission of
very short packets consisting of a single token.
Each packet consists of a packet type, an
address, and a piece of data. Different types of
packets include normal token packets,
initialization packets, and special control
packets for machine re-configuration control.
The address of each packet consists of a
processing element address and a template address
which points to one particular actor instruction

_within a processing efement. The data can be any
of the aliowed data types of HDFL or contro!
information if the packet is a control packet

The communications network is designed to be
reliable, with automatic retry on garbled
messages, distributed bus arbitration, alternate
path packet routing, and failed processing
element translation tables to allow rapid
switch-in and use of spare processing elements.

The communications network can physically
accomodate up to an 8x8x8 configuration or 512
processing elements. Many signal processing
problems could potentially use this many
processing elements without overloading the bus
capacity because of the ease of partitioning some
of these aigorithms. However, for general data
processing, the bus bandw-dth will begin to
saturate above four processirg elements per bus.
More processing elements can be added and
performance will continue to increase but at
iower efficiency per processing element.

4.2 Processing Element

Each processing element consists of two
parts - the above mentioned communications
functionality and a processing engine which can
perform the primitive actor operations and the

data flow sequencing control. Each processing
element has local memory which is used for
program and data storage; there is no giobal

memory. The processing element has been targeted
for VLSI implementation and consists of two

custom chips - a communications chip and a
processor chip - and some commercialiy available
memory parts. This organization is shown in
Figure 6.

The communications chip receives packets
from the routing network and either forwards them
on to other processing elements or sends them to
the processor chip. When the processor chip
receives a packet, it checks if this token has
enabled a template to fire. If so, the operands
and opcode for this template are sent to the ALU.
The ALU will perform the indicated operation and
send the result to be matched with its
destination address and sent eithsr back to this
same processing element or out into the routing
network.

“
i A

i >

D Laloh)

N A, T

Sy

e

- S

