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FOREWORD

The first course in physics at the Massachusetts Institute of Tech-
nology extends through the first and second years. The subject matter
covered in the first year consists of Mechanics, Heat, and Sound; in the
second year Electricity and Magnetism, Optics, and Modern Physics
are included. A two year course in Analytical Geometry and Calculus
is given concurrently with the course in physics. This book has developed
out of the author’s experience in teaching the first year of the physies
prograni.

The title of the book, Principles of Physics, has been chosen deliber-
ately to indicate that its emphasis is on physical principles. Historical
background and practical applications have been given a place of
secondary importance.

The book opens with several chapters on statics in order that kine-
matics may be postponed until the student has acquired some familiarity
with the concepts and notation of calculus. Beginning with Chapter 4,
simple differentiation and integration are introduced to supplement and
extend the algebraic development of the equations of linear motion with
constant acceleration. From that point on, the calculus is used freely
wherever its inclusion is warranted.

~ Three systems of units are used; the English gravitational because it
is the one used in engineering work throughout this country, the cgs
system because some familiarity with it is essential for any intelligent
reading of the literature of physics, and the mks system because of its
increasing use in electricity and magnetism as well as because it seems
destined eventually to supplant the cgs system. ‘

Many of the problems in the book are taken from examinations given
in connection with the physies course at M.I.T. The author wishes to
express his thanks to all of his colleagues who have shared in writing
these examinations. In particular, he is indebted to Professor M. Stanley
Livingston both for many stimulating and informative discussions arising
from the latter’s collaboration in presenting the experimental lectures



in the course over a period of years, and for his encouragement in the
task of developing a set of lecture notes into this book.

The multifiash photographs were taken with the advice and assistance
of Professor Harold E. Edgerton, to whom the author is' duly grateful.
Collective acknowledgement is made to numerous contributors to the
American Journal of Physics (formerly the American Physics Teacher)
since its inception.

Francis W. SEARs.

. Cambridge, Mass,
March, 1944,
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CHAPTER 1
COMPOSITION AND RESOLUTION OF VECTORS

1.1 Force. Mechanics is the branch of physics and engineering which
deals with the interrelations of force, matter, and motion. We shall begin
with a study of forces. The term force, as used in mechanics, refers to
what is known in everyday language as a push or a pull. We can exert a
force on a body by muscular effort; a stretched spring exerts forces on the
bodies to which its ends are attached; compressed air exerts a force on the
walls of its container; a locomotive exerts a force on the train which it is
drawing. In all of these instances the body exerting the force is in contact
with the body on which the force is exerted, and forces of this sort are
known as contact forces. There are also forces which act through empty
space without contact, and are called action-at-a-distance forces. The force
of gravitational attraction exerted on a body by the earth, and known as
the weight of the body, is the most important of these for our present study.
Electrical and magnetic forces are also action-at-a-distance forces, but we
shall not be concerned with them for the present.

All forces fall into one or the other of these two classes, a fact that will
be found useful later when deciding just what forces are aeting on a given
body. It is only necessary to observe what bodies are in contact with the
one under consideration. The only forces on the body are then those
exerted by the bodies in contact with it, together with the gravitational
force or the weight of the body.

Those forces acting on a given body which are exerted by other bodies
are referred to as exfernal forces. Forces exerted on one part of a body by
other parts of the same body are called internal forces.

1.2 Units and standards. The early Greek philosophers confined their
activities largely to speculations about Nature, and to attempts to recon-
cile the observed behaviour of bodies with theological doctrines. What
has been called the scientific method began to appear in the time of Galileo
Galilei (1564-1642). Galileo’s studies of the laws of freely falling bodies
were made not in an attempt to explain why bodies fell toward the earth,
but rather to determine how far they fell in a given time, and kow fast they
moved. Physics as it exists to-day has been called the science of measure-
ment, and the importance of quantitalive knowledge and reasoning has

1



2 COMPOSITION AND RESOLUTION OF VECTORS [Cuar. ]

been expressed by Lord Kelvin (1824-1907) as follows: “I often say that
when you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot express it
in numbers, your knowledge is of a meagre and unsatisfactory kind; it may
be the beginning of knowledge, but you have scarcely, in your thoughts,
advanced to the stage of Science, whatever the matter may be.”

The first step in the measurement of a physical quantity consists in
choosing a unit of that quantity. As the result of international collabo-
ration over a long period, practically all of the units used in physics are
now the same throughout the world. The second step is an experiment
that determines the ratio of the magnitude of the quantity to the magni-
tude of the unit. Thus, when we say that the length of a rod is 10 centi-
meters, we state that its length is ten tunes as great as the unit of length,
the centimeter.

It is passible to simplify many of the equations of physics by the proper
choice of units of physical quantities. Any set of units which is chosen so
that these simplified equations can be used is called a system of units. We
shall use three such systems in this book. They are, first, the English
gravitational system; second, the meter-kilogram-second or mks system;
and third, the centimeter-gram-second or cgs system. The units of these
systems will be defined as the need for them arises.

Most of the fundamental units of physics are embodied in a physical
object called a standard. One of the functions of the National Bureau of
Standards in Washington, D. C. is to maintain in its vaults standards of
various quantities with which commercial and technical measuring in-
struments ean be compared for accuracy.

1.3 The pound. The unit of force which we shall use for the present
is the English gravitational unit, the pound. Other units will be discussed
in Chap. 5. This unit is embodied in a cylinder of platinum-iridium called
the standard pound. The unit of force is defined as the weight of the
standard pound. That is, it is a force equal to the force of gravitational
attraction which the earth exerts on the standard pound. Since the earth’s
gravitational attraction for a given body varies slightly from one point to
another on the earth’s surface it is further stipulated that the unit force
shall equal the weight of the standard pound af sea level and 45° latitude.}

In order that an unknown force can be compared with the force unit
(and thereby measured) some measurable effect produced by a force must
be used. One common effect of a force is to alter the dimensions or shape
of a body on which the force is exerted; another is to alter the state of

18ee Section 15.3 for a more precise definition.




1.4) GRAPHICAL REPRESENTATION OF FORCES 3

motion of the body. Both of these effects are used in the measurement of
forces. In this chapter we shall consider only the former; the latter will
be discussed in Chap. 5.

The instrument used to measure forces is the spring balance, which
consistg of a coil spring enclosed in a case for protection and carrying at
one end a pointer that moves over a scale. A force exerted on the balance
increases the length of the spring. The balance can be calibrated as
follows: The standard pound is first suspended from the balance and the
position of the pointer marked 1 lb. Any number of duplicates of the
standard can then be prepared by suspending each of them in turn from
the balance and removing or adding material until the index stands at
11b. Then, when two, three, or more of these are suspended simultane-
ously from the balance, the force stretching it is 2 lbs, 3 lbs, etc., and
the corresponding positions of the pointer can be labelled 2 lbs, 3 1bs, etc.
This procedure makes no assumptions about the elastic properties of the
spring, exoept that the force exerted on it is always the same when its
index stands at the same point. The calibrated balance can then be used
to measure any unknown force.

1.4 Graphical representation of forces. Vectors. Suppose we are to
slide a box along the floor by pulling it with a string or pushing it with a
stick, as in Fig. 1-1. That is, we are to slide it by exerting a force on it.

The point of view which we now

adopt is that the motion of the box

is caused not by the objects which

push or pull on it, but by the forces

which these exert. For concreteness

_ assume the magnitude of the push

or pull to be 10 lbs. It is clear that

Fia. 1-1. The box is pulled by the string simply to write ‘10 lbs” on the dia-

or pushed by the stick. gram would not completely describe

the force, since it would not indicate

the direction in which the force was acting. One might write ‘10 lbs, 30°

above horizontal to the right,” or “10 lbs, 45° below horizontal to the

right,”” but all of the above information may be conveyed more briefly if

we adopt the convention of representing a force by an arrow. The length

of the arrow, to some chosen scale, indicates the size or magnitude of the

force, and the direction in which the arrow points indicates the direction

of the force. Thus Fig. 1-2 (in which a scale of 2§ in. = 1 1b has been

chosen) is the force diagram corresponding to Fig. 1-1. (There are other
forces acting on the box, but these are not shown in the figure.)
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Fi1a. 1-2. The force diagram corresponding to Fig. 1-1,

Force is not the only physical quantity which requires the specification
of direction as well as magnitude. For example, the velocity of a plane is
not completely specified by stating that it is 300 miles per hour; we need
to know the direction also. The concept of density, on the other hand,
has no direction associated with it.

Quantities like force and velocity, which involve both magnitude and
direction, are called vector quantities. Those like density, which involve
magnitude only, are called scalars. Any vector quantity can be repre-
sented by an arrow, and this arrow is called a vector (or if a more specific
statement is needed, a force vector or a velocity vector). We shall first
consider force vectors only, but the ideas developed in dealing with them
can be applied to any other vector quantity.

1.5 Components of a vector. When a box is pulled or pushed along
the floor by an inclined force as in Fig. 1-1, it is clear that the effectiveness
of the force in moving the box along the floor depends upon the direction
in which the force acts. Everyone knows by experience that a given force
is more effective for moving the box the more nearly the direction of the
force approaches the horizontal. It is also clear that if the force is applied
at an angle, as in Fig. 1-1, it is producing another effect in addition to
moving the box ahead. That is, the pull of the string is in part tending
to lift the box off the floor, and the push of the stick is in part forcing the
box down against the floor. We are thus led to the idea of the components
of a force, that is, the effective values of a force in directions other than
that of the force itself.

The component of a force in any direction can be found by a simple
graphical method. Suppose we wish to know how much force is avail-
able for sliding the box in Fig. 1-1 if the applied force is & pull of 10 lbs
directed 30° above the horizontal. Let the given force be represented by
the vector OA in Fig. 1-3, in the proper direction and to some convenient
scale. Line OX is the direction of the desired component. From point A
drop a perpendicular to OX, intersecting it at B. The vector OB, to the
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same scale as that used for the given vector, represents the component of
0A in the direction 0X. Measurements of the diagram show that if 0OA
represents a force of 10 lbs, then OB is about 8.7 lbs. That is, the 10-lb
force at an angle of 30° above the horizontal has an effective value of only
about 8.7 1bs in producing forward motion.

The component OB may also be computed as follows. Since OAB is
a right triangle, it follows that

OB

cos 30° = —
04

OB = OA cos 30°

The lengths OB and OA, however, are proportional to the magnitudes
of the forces they represent. Therefore the desired component OB, in
pounds, equals the given force OA, in pounds, multiplied by the cosine of
the angle between OA and OB. The magnitude of OB is therefore

OB (1bs) = OA (Ibs) X cos 30°
=10lbs X .866
= 8.66 lbs

This result agrees as well as could be expected with that obtained from
measurements of the diagram. The superiority of the trigonometric
method is evident, however, since it does not depend for accuracy on the
careful construction and measurement of a scale diagram.

A
t .
. e
|
1 |

07 30 l d l

b ¢ -l— X
Fx
Fia. 1-3. Vector OB is the component Fic. 1-4. Fx = F cos 8 is the
of vector OA in the direction OX. X-component of F.

The line OX in Fig. 1-3 is called the X-axis, and the foregoing analysis
may be generalized as follows. If a force F makes an angle 6 with the
X-axis (Fig. 14), its component F, along the X-axis is

F,=Fcosf (1.1)

It should be obvious that if the force F is at right angles to the X-axis,
its component along that axis is zero (since cos 90° = 0), and if the force
lies along the axis, its component is equal to the force itself (sinee cos 0° = 1).
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The lifting component of an inclined force can be found as in Fig. 1-5.
Line OY, called the Y-axis, is constructed in a vertical direction through O
and a perpendicular dropped to this axis from the head of t'he arrow F.

Evidently

F, = F cos ¢ (1.2)
where ¢ is the angle between F and the Y-axis.
Y
- )
|
Fy |
|
% ] .
- X
X A
Fi16.1-5. Fy, = Fcos¢ = Fginbis F16.1-8. The force F may be replaced by
the Y-component of F. its rectangular components F and F,.

It is also evident from Fig. 1-5 that
F, = Fsin ¢ (1.3)

If F =10 lbs. and 8 = 30° then ¢ = 60° and cos ¢ = sin 6 = 0.50.
Hence F,, = 5 1bs.

Just as we may find the component of a given force in any direction,
so may we find the component of any of its components, and so on. It
will be seen from Fig. 1-6, however, that F, has no component along the
Y-axis and F, has no component along the X-axis. No further resolution
of the force into X- and Y-components is therefore possible. Physically
this means that the two forces F, and F,, acting simultaneously, are
equivalent in all respects to the original force F. Since the axes OX and
OY are at right angles to one another, F, and F, are called the rectangular
components of the force F. Any force may be replaced by its rectangular
components. The fact that the force F has been replaced by its components
F; and F, is indicated in Fig. 1-6 by crossing out lightly the vector F.

The process of finding the components of a vector is called the resolution
of the vector, and one speaks of resolving a given vector into its rectangular
components. i

An experiment to show that a force may be replaced by its rectangular
components is illustrated in Fig. 1-7. A small ring, to which are attached
three cords, is placed on a pin set in a vertical board. Two of the cords
pass over pulleys as shown. When weights of 8.66, 5, and 10 lbs are
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Fig. 1-8. F. and F, are the com-
ponents of F, parallel and perpendicular

51b
Fi6. 1-7. to the surface of the plaue.

suspended from the cords, with the cord carrying the 10-lb weight making
an angle of 30° with the horizontal, it will be found that the pin can be
removed and that the ring will remain at rest under the combined action
of the pulls in the three cords. This shows that the 10-lb force, at an
angle of 30° above the horizontal, is equivalent to a horizontal force of
8.66 lbs to the right and a vertical force of 5 Ibs upward, since the ring
can be held at rest by the application of two forces equal to these but.
oppositely directed.

1t is frequently necessary to find the components of a force in other
than horizontal and vertical directions. Thus in Fig. 1-8, where a block
is being drawn up an inclined plane by the foree F, it is desired to find the -
components of this force parallel and perpendicular to the surface of the
plane. The X- and Y-axes are now drawn parallel and perpendicular to
this surface, and the same procedure followed as before.

1.6 Composition of forces. When a number of forces are simultane-
ously applied at a point, it is found that the same effect can always be
produced by a single force having the proper magnitude and direction.
We wish to find this force, called the resultant, when the separate forces
are known. The process is known as the composition of forces, and is
evidently the converse problem to that of resolving a given force into
components. Let us begin by considering some simple cases.

(1) Two forces at right angles.
Suppose the two forces of 10 lbs and
5 lbs are applied simultaneously at
the point O as in Fig. 1-9. To find
the resultant force graphically, lay
off the given forces OP and 0Q to
scale, and draw horizontal and verti-
Fig. 1-9. cal construction lines from P and Q,
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intersecting at S. The arrow drawn from O to S represents the resultant
of the given forces. Its length, to the same secale as that used for the
original forces, gives the magnitude of the resultant, and the angle ¢ gives
its direction.

Since the length PS or OQ represents 5 lbs, and the length OP repre-
sents 10 lbs, the magnitude of the resultant may be computed from the
right triangle OPS. Thus

08 = VOP*+ PS? = V10 4 52 = 11.2 1bs

The angle 4 may also be computed froimn either its sine, cosine, or
tangent. Thus

sin 6 = O = 0447
11.2

cos 6 = -— = 0.803
11.2
5
10
Using any one of these values we find from tables of natural functions

8 = 26.5°

We conclude, then, that a single force of 11.2 lbs, at an angle of 26.5°
above the horizontal, will produce the same effect as the two forces of
10 1bs horizontally and 5 lbs vertically. Notice that the resultant is not
the arithmetic sum of 5 lbs and 10 lbs. That is, the two forces are not
equivalent to a single force of 15 lbs.

Q
. - %
g
0 7]

P P

tan 0 = = 0.500

Fic. 1-10. Parallelogram method for Fia. 1-11. Triangle method for finding
finding the resultant of two vectors. the resultant of two vectors.

(2) Two forces not at right angles. (a) Parallelogram method. Let
OP and 0Q in Fig. 1-10 represent the forces whose resultant is desired.
Draw construction lines from P parallel to 0Q, and from @ parallel to OP,
intersecting at 8. The arrow OS represents the resultant R in magnitude
and direction. Since OPSQ is a parallelogram, this method is called the
parallelogram method. The magnitude and direction of the resultant may
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be found by measurement or may be i i
: y be computed from the triangle OP
the help of the sine and cosine laws. Blo OPS with

NortkE. . The diagonal QP is not the resultant of the given forces.

(b) Tnangle_ met.hod. Draw one force vector with its tail at the head
of the other as in Fig. 1-11 (the construction may be started with either
vector), and complete the triangle. The closing side of the triangle, CQ
represents the resultant. A comparison of Figs. 1-11 and 1-10 will show’
that the same resultant is obtained by either method.

0-_——__.—___———_£=——.._—-——k 0 -_-=R-_=s=-_—..-9=
P Q P

®) (®)
Fic. 1-12. Vector R is the resultant of vectors P and Q.

(3) Special case. Both forces in the same line. When both forces lie
in the same straight line the triangle of Fig. 1-11 flattens out into a line
also. To be able to see all of the force vectors, it is customary to displace
them slightly as in Fig. 1-12. We then have Fig. 1-12 (a) or 1-12 (b),
depending upon whether the two forces are in the same or opposite di-
rections. Only in this case is the magnitude of the resultant equal to the

sum (or difference) of the magnitudes of the components.

Fic. 1-13. Polygon method.

(4) More than two forces. Polygon method. -Wken more than two
forces are to be combined, one may first find the resultaut of any two, then
combine this resultant with a third, and so on. The process is illustrated
in Fig. 1-13, which shows the four forces A, B, C, and D acting simul-
taneously at the point O. In Fig. 1-13 (b), forces A and B are first com-
bined by the triangle method giving a resultant E; force E is then com-
bined by the same process with C giving a resultant F; finally F and D
are combined to obtain the resultant R. Evidently the vectors E and F
peed not have been drawn—one need only draw the given vectors in
succession with the tail of each at the head of the one preceding it, and
complete the polygon by a vector R from the tail of the first to the head
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of the last vector. The order in which the vectors are drawn makes no
difference as shown in Fig. 1-13 (c).

It has been assumed in the preceding discussion that all of the forces
lie in the same plane. Such forces are called co-planar, and, except in a
few instances, we shall consider only situations involving co-planar forces.

1.7 Composition of forces by rectangular resolution. While the poly-
gon method is a satisfactory graphical one for finding the resultant of a
number of Torces, it is awkward for computation because one must work,
in general, with oblique triangles. Therefore the usual method for finding
the resultant of a number of forces is first to resolve all of the forces into
their rectangular components along any convenient pair of axes; second,
to find the algebraic sum of all of the X- and all of the Y-components; and
third, combine these sums to obtain the final resultant. This process
makes it possible to work with right triangles only, and is called the method
of rectangular resolution. As an example, let us compute the resultant of
the four forces in Fig. 1-14, which are the same as those in Fig. 1-13.

20 b
7l
5
%- 1
b FRREEDY: !
a0\ /s b - 32.1° 4
25 1b X == 20.66
10 b
(a) (e)

Fic. 1-14.

The forces are shown in Fig. 1-14 (b) resolved into X- and Y-components.
The 25-1b and the 10-1b forces are already along the axes and need not
be resolved. It is customary to consider X-components which are directed
toward the right as positive and those toward the left, negative. Similarly
Y-components in an upward direction are considered positive and those
downward, negative. This convention of signs is not always adhered to,
however. In general one chooses positive and negative directions so as to
avoid minus signs if possible.

The X-component of the 8-Ib force is + 8 cos 45° = + 5.66 Ibs, and its
Y-component is +8 sin 45° = + 5.66 lbs. The X-component of the 20-1b
force is —20 cos 60° = —10 lbs, its Y-component is +20 sin 60° = +17.3
lbs. The algebraic sum of the X-components is a force of 25 + 5.66 — 10 =
+ 20.66 lbs toward the right. The algebraic sum of the Y-components
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-

is a force of 17.3 + 5.66 — 10 = 4 12.96 lbs upward. The resultant is
equal to the square root of the sums of the squares of the resultant X-
and Y-components (Fig. 1-14 (¢)). The angle which it makes with the
X-axis can be found from its tangent. Thus

R = V20.66* + 12.96? = 24.4 lbs

12.96

tan § = = 0.627
66

6 = 32.1°

While three separate diagrams are shown in Fig. 1-14 for clarity, in
practice one would carry out the entire construction in a single diagram.

The mathematical symbol for the algebraic sum of the X- or Y-com-
ponents i8 ZX or ZY. (2 is the Greek letter sigma or S, meaning ‘“‘the
sum of”’.) Hence one can write in general

R =V(EX)+ CY)
Y

tan0=§7

1.8 Resultant of a set of non-concurrent forces. Fig. 1-15 represents
a rod upon which are exerted the three forces Fy, F;, and F;5. These forces
are not all applied at the same point, and even if their lines of action are
extended as shown by the dotted lines, these do not intersect at a common
point. Nevertheless the three forces have a resultant in the sense that it
is possible to find a single force which will produce the same effect as is
produced by the simultaneous action of the given forces. This resultant
may be found graphically as follows:
Start with any two of the given
forces, say F: and F,, and extend
their lines of action until they inter-
sect (point z). Transfer Fy and F,
to point z, and find their resultant
R, by any convenient method. The
parallelogram method is used in the
figure. Next, extend the lines of
Fic. 1-16. Vector R is the resultant action Ot: R, and F; until _they inter-
of Fy, Fy, and Fi. sect (point ) and combine R; and
' F; to find the resultant E. Finally,
extend the line of action of B until it intersects the rod at pointz. Then
a single force having the magnitude and direction of R, and applied at
point z of the rod, will produce the same effect as the given forces.




