1956 NATiIONAL CONVENTION

IRE

Convention Record

Part 2
Circuit Theory

SESSIONS ON

Circuits |—Symposium on Application of Recent Network
Ideas to Feedback System Problems

Circuits ll—Design and Application of Active Networks
Circuits lll—Network Synthesis Techniques

w0+ e
1
: j,’, Al - ‘ f , 1
4} ¥4 ! Kp

!' L ot 3 8 ‘r'.'%i,y;' .'" { "i

SPONSORED BY | BESRERR A Frankl 271 |

IRE PROFESSIONAL GROUP ON || 1 1 e
Circuit Theory ( ‘.J —J’ J

M g & SRR S £ ot A oM e |

Presented at the IRE National Convention, New York, N. Y., March 19-22, 1956
Copyright ® 1956 by The Institute of Radio Engineers, Inc., | East 79 Street, New York 2|, N. Y.

The Institute of Radio Engineers



-

IRE CONVENTION RECORD

1956 NATIONAL CONVENTION

PART 2 - CIRCUIT THEORY

TABLE OF CONTENTS

Session 30: Circuits I - Symposium on Application of Recent Network Ideas to Feedback
System Problems
(Sponsored by the Professional Group on Circuit Theory)

Network Theory in the Practical Design of Control Systems . . .......... + « J. G. Truxal 3
Some Theorems Applicable to the Problem of Stability in Linear Systems ... John L. Bower 8
Feedback System Synthesis by the Inverse Root-Locus Method . ........ John A, Aseltine 13
Modulated Control Systems . . ... v v vt v e e vevoeveveossssesesesassss Ri E, Graham 18

Session 41: Circuits II - Design and Application of Active Networks
(Sponsored by the Professional Group on Circuit Theory)

Driving-Point Impedance Functions of Active Networks . . .. ............. N. DeClaris 26
Active Network Synthesis . . . .. ..o .0 v teeeececeaaeresssaes . Isaac M, Horowitz 38
Considerations on the Stability of Active Elements and Applications to Transistors
e e e eee et e et e s e e e s e eeeeso.Arthur P, Stern 46
Invariants of Linear Noisy Networks ......... weseees... H. A Haus and R. B. Adler 53
Graphical Analysis of Transistor Circuits by Separation of Variables

cec e «+ .+ D, L, Finn and B, J, Dasher 68

Session 49: Circuits III - Network Synthesis Techniques
(Sponsored by the Professional Group on Circuit Theory)

Simple and Double Alternation in Network Synthesis ................... F.M, Reza 72
Synthesis of Tchebycheff RC Band Pass Filters .....................David Helman 71
Pulsed RC Networks for Sampled-Data Systems . . ........ e eesesss. Jack Sklansky 81
An Operational Calculus for Numerical Analysis ........ Samuel Thaler and Rubin Boxer 100
Linear Complementary Smoothing Compensated for Sampled Data Lags . .Joseph L. Ryerson 106







Network Theory in the Practical Design of Control Systems

J.G. Truxal

Microwave Research Institute
Polytechnic Institute of Brooklyn
Brooklyn, New York

Network theory in large measure provides
the theoretical foundations for the design of feed-
back control systems. Network theory stands as
the language of communication between the applied
mathematician and theoretically-minded engineer,
on the one hand, and, on the other hand, the prac-
ticing engineer who must make a feedback system
work, whether it be a control system, a feedback
amplifier, or another application. In particular,
three facets of network theory have proved of
very considerable importance to the control sys-
tem engineer: realization techniques, feedback
theory, and measurement techniques. In the
following paragraphs we indicate typical applica-
tions of each of these facets, then describe brief-
ly a few of the problems which are of interest to
the control engineer, but which are still not sa-
tisfactorily solved.

Thus, we are discussing here the correla-
tion of network theory and feedback control sys-
tem design. There is some danger in any at-
tempt to recite the importance of network theory
in feedback control, since there is considerable
question in the case of many of the applications
as to whether the primary development arose
from network theory or from automatic control.
This is an insignificant question, however; we
shall not even attempt a definition of network
theory, but rather assume that network theory
includes the study of the properties of networks
and techniques for the synthesis of networks with
specified characteristics.

REALIZATION TECHNIQUES

To most engineers, network theory means
first of all the body of realization techniques ~
methods for the determination of a network with
a specified transfer function, driving-point im-
pedance, etc. The network may contain all three
passive elements R, L, and C and, possibly,
also active elements such as tubes or transistors.

The first interest of the control system de-
signer is ordinarily in the synthesis of networks
to yield a prescribed transfer function. The
classical (though not always practical) problem

of control system design is illustrated in Fig. 1{a);
the components represented by the transfer func-
tion Gg(s) are assumed given and the designer
must selecta Gy(s) to yield satisfactory charac-
teristics for the overall system. If the root-locus
method of design is used, the poles and zeros of
Gy(s) must be selected.

The loci are first plotted for Gj = K, as
shown for a possible Gg in Fig.1(b). These
loci represent the motion of the poles of T as
the gain K is increased from zero. The loci
start from the poles of Gy, shown by crosses,
and move to the zeros of Gy, here gll at infinity.
When K = K; the closed-loop poles are moving
into the right half plane and the system is becom-
ing unstable. The problem of control system de-
sign is essentially the problem of selecting a set
of poles and zeros for Gy(s) such that the loci
are modified and move to the left from the com-
plex poles of Gy instead of to the right. The
set of poles and zeros for the controller transfer
function Gj(s) is not unique, but suitable sets
can be determined in a straightforward procedure.

Once the transfer function Giy(s) is deter-
mined, system design devolves to realization of
Gi1(s) by a physically realizable network. If
Gl(s) is a simple transfer function with perhaps
no more than two poles and two zeros, the reali-
zation techniques of network theory are hardly
necessary; rather, we simply call on our exper-
ience, intuition, or an appropriate handbook to
evoke an appropriate network. Even if G1 is of
greater complexity, isolating amplifiers using
vacuum tubes allow us to break G1 into simple
factors, each to be realized by a single stage.
Even with transistors the absence of isolation is
not a particulgrly severe handicap at the low fre-
quencies we are considering here.

Unfortunately, actual design of control sys-
tems is seldom quite so idealistic. Commonly a
complete feedback control system involves a mul-
tiplicity of loops, with various transducers mea-
suring relevant signals and the transducer outputs
combined in a controller or analog computer.

The interconnection of the various signals in-
volves the realization of specified transfer
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with specified loading and gain levels. In addi-
tion, noise considerations commonly limit the
form of realization utilized.

There are other applications of realization
techniques which should be mentioned. The en-
tire control system may be designed in terms of
realization techniques. For example, the con-
trol system can be made stable under any passive
load if the output admittance is made a positive
real function of s. In this situation, we have the
realization problem of designing a two—port active
network for a specified transfer function with one
driving-point function required to be positive real.

Alternatively, the entire feedback system can
be designed with the philosophy of the network
synthesist, as the overall transfer function, T(s)
in Fig. 1, is selected at the outset of the design
to meet system specifications, the open-loop
transfer function (GyGg) is determined analyti-
cally or graphically, and the required Gj is then
realized. Such a direct approach to control sys-
tem design is particularly important in that it
demonstrates that the designer can be the master
of system performance; in practice it is perhaps
most useful in very simple cases or in very com-
plex situations where conventional techniques
break down (e.g., in the design of sampled-data
systems where the flexibility of a digital control-
ler is available or in complex, multi-loop sys-
tems).

Finally, in the category of realization tech-
niques we should include the use of such methods
of network theory in analog-computer work. The
intelligent utilization of analog computers as aids
in the design of feedback systems, particularly
nonlinear feedback systems, requires that the
simulation of actual components of the system be
effected on a transfer-function basis, rather than
on the basis of the integro-differential equations.
The transfer function of the basic operational-
amplifier circuit of Fig. 2 is simply -Z3/2Z; ;
hence simulation of a specified transfer function
involves realization of appropriate Zg and 2,4,
usually by RC networks. Even more elegant
realization problems arise in the design of basi-
cally passive analog simulators such as the sim-
ulators developed at California Institute of Tech-
nology for aircraft flutter studies or in the sim-
ulation of specified nonlinear characteristics.

FEEDBACK THEORY

Largely because of the nature of the great
number of books in the servo field, feedback theory
is nearly synonymous with control-system design
theory. The very heavy emphasis on stability
theory is embodied in the root-locus plotting, the

Routh test, the Nyquist diagram, the asymptotic
gain and phase plots, and the Nichols charts. The
control engineers emphasis on frequency-response
analysis and design has been based directly on
network theory. i
Yet even here the carry-over from the the-
oretician to the practicing designer has not al- !
ways been complete. The designer is quite at
home with the asymptotic gain plots, for example, ..
and commonly plots gain in terms of the straight
line asymptotes, as in Fig.3. Yet the similar
straight-line approximation for the phase charac- J
teristic is apparently not well known.
In the presence of the great emphasis on
stability, the control system engineer all too often
loses sight of the basic objective of the control
system. Stability is really only an annoying by-
product; the fundamental motivation for the use of
feedback in the first place is the desire to realize
a high return difference or loop gain around a
portion of the system. If this high loop gain is
realized around the motor, for example, the sys-
tem characteristics are insensitive to changes in
motor parameters. Thus, in order to evaluate
his system, the control engineer must turn to the
basic principles of the theory of active or feed-
back networks.
Nearly twenty years ago Bode demonstrated
that, unless conditionally stable systems are used,
there is a definite relation between the loop gain
and the excess bandwidth required in a feedback
system. In other words, if the loop gain is to be
maintained high over a specified bandwidth, be-
yond this bandwidth it cannot be cut off at an aver- :
age rate greater than about 33db/decade if satis-
factory relative stability is to be realized. In the
single-loop system of Fig. 1, the required loop
gain is established by the relation

T _dT/T _ 1 )
G, dGZ/Gz 1+G, G,

S

In other words, the sensitivity of T with respect
to Gy (the percentage change in Gg divided into
the resulting percentage change in T) is inversely
proportional to the loop gain (-G1Gy) if the latter
is much greater than unity. Thus, a sensitivity
of 0.001 requires a loop gain of 103 or 60db. The
magnitude of the loop gain measures the self-
calibration properties of the system. The above
equation imposes a definite correlation between
the sensitivity and the magnitude of the stability
problem: the lower the sensitivity, the higher the
loop gain, and the worse the stability problem.

One method, largely unexploited, for the
feedback designer to circumvent this fundamental



limitation is to consider a different measure of
sensitivity, a measure more appropriate for the
particular problem at hand. For example, the
above definition measures the sensitivity of the
complex transmission T; in certain feedback
systems only the gain IT ] is of interest. In such
cases, we should consider as a figure of merit
for our system

dTl“T[ (2)

R = = ReS
dc;z/c;2

Figure 4 shows two systems for realizing identical
overall transfer functions with the same motor
and load. The sensitivity S is very nearly the
same in the two cases, but, as indicated, the
sensitivity of the gain is far better in the case of
the minor-loop compensation. A more careful
comparison of the two systems demonstrates that
we are effectively trading gain sensitivity for
phase sensitivity; in other words, although the
sensitivity is fixed by the loop gain, the manner
in which S is divided between real and imaginary
parts (gain and phase sensitivities) depends on
the system configuration.

Actually what we commonly want in feedback
system design is control over the sensitivity of
the transient response - e. g., the sensitivity of
the overshoot to changes in a system parameter.
We would like to choose a configuration such that,
when a parameter changes, the poles and zeros
move in such a fashion that the essential charac-
teristics of the transient response remain un-
altered. Figure 5 shows three pole-zero con-
figurations which can have nearly identical tran-
sient responses. In (a) the response is estab-
lished almost entirely by the location of the pair
of complex poles. As these poles move toward
the negative real axis in (b), the zero is moved
inward to maintain overshoot approximately con-
stant. In (c) the real-axis pole counteracts the
tendency for greater overshoot due to the motion
of the complex poles toward the imaginary axis.
Thus, if transient-response sensitivity is im-
portant, we might achieve a satisfactory design
with a system in which variation in a specified
parameter caused the transitions among the
three configurations of Fig. 5.

The theory of feedback networks is, accord-
ingly, important for the techniques of stability
analysis and also as a basis for the comparative
evaluation of alternate designs, and block-dia-
gram configurations.

MEASUREMENT TECHNIQUES

The third aspect of network theory of signi-

ficance to the control engineer is the field of
measurement techniques. In particular, network
theory has demonstrated the correlations between,
on the one hand, the frequency characteristics
(gain and phase) so useful in feedback-system de-
sign and, on the otherhand, the transient response
and the response to random input signals.

Pulse, step-function, and square-wave test-
ing of control-system components has become
commonplace since the refinement of techniques
for determining frequency characteristics from
transient response and the availability of com -
puting equipment for effecting the conversion. The
use of low-level, random signals for determining
system response by crosscorrelating input and
output or by measuring the cross power spectrum
provides an alternate approach for measuring
system dynamics, although the method also raises
certain questions: e. g., how much data is required
for a specified accuracy; is it more satisfactory
to crosscorrelate and then take the Fourier trans-
form or to determine the cross power spectrum
directly?

Thus, network theory has indicated to the
control engineer a variety of techniques for the
description of his components in mathematical
terms useful in system design. A comparatively
unexploited field is the characterization and de-
scription of typical input signals, but as time-
varying and nonlinear systems are used more
and more to improve system performance we can
anticipate an increasingly strong interest in sig-
nal theory. Certainly it is only through a more
precise and appropriate description of our input
signals that we will be able intelligently to design
systems specifically for these signals. The ex-
tensive work on the design of nonlinear systems
for optimum response to step functions provides
one example of the fruitfulness of such an approach.

PRESENT PROBLEMS

Although in a meeting of this type it is cus-
tomary to emphasize that the feedback art is
several millenniums old, we might rather point
out that the glamorous age of feedback really was
born only about a decade ago. In that short time,
enormous strides have been made in the theory
pertinent to feedback-system design. In large
measure network theory has been responsible for
or associated with these strides. The control
engineer has built his field on a foundation of the
mathematics of network theory and the physics of
control elements as they are drawn from mechan-
ical, electrical, aeronautical, chemical engineer-
ing, etc.

In each of the three categories we discussed




above, however, there are certain problems which
at the present time the average control engineer
is unable to handle conveniently. Perhaps some
of these problems have been solved, but we shall
list them briefly here. We consider only linear,
time-invariant systems, even though the time-
variable or nonlinear systems pose even more
important problems.

Realization Techniques

(1) The problem of correlating transient and
frequency responses is still troublesome, in spite
of the extensive work in this field. A common
problem in control system design, for example,
involves meeting certain specifications on the
step function response (e.g., time delay, over-
shoot, and settling time) and simultaneously real-
izing adequate noise filtering. Simple, approxi-
mate relations between time delay, for example,
and frequency characteristics all too often break
down in practical problems. Specifically, we
commonly find time delay Tq given as-d8/dw,
where B is the phase characteristic. If the fac-
tor (s2 + a2) is added in the transfer function,

B is unchanged for w < a, yet the time delay

for step-function inputs may be modified radically
in a practical system. Likewise the relation that
T4 is 1/K,, where K is the velocity constant
is an inadequate approximation for many systems
in which the overshoot is not negligible.

(2) Specific realization problems commonly
arise for which there seems to be no simple so-
lution. For example, we frequently would like
an RC network with all capacitors a specified
size or at least limited in size. Conventionally,
we synthesize a network, then try to manipulate
the matrix to a satisfactory form. Such matrix
manipulation can be tedious and frustrating, par-
ticularly since we are not sure a solution exists.

(3) The realization of active networks in-
cluding transistors as the active elements is still
largely a matter of working with familiar config-
urations. The basic problem of active network
synthesis - the sensitivity problem - is still
largely unsolved, as, if we wish to design with a
reasonable number of elements, we generally can
maintain little if any control over the sensitivity
in the realization procedure.

Feedback Theory

(4) Other than the problems mentioned
earlier, the most important problem in feedback
theory is the design of multi-loop systems. In a
complex feedback system, we may need three
Nyquist diagrams (or three root-locus plots) to
determine system performance. Design should
guide the choice of the innermost-loop transfer
function in such a way as to yield desirable char-
acteristics when we reach the outermost loop. At
the present stage of the art, a trial - and - error
approach is necessary.

(5) We still know very little about the char-
acteristics of interlocked feedback systems: a set
of systems where the signals in one system are
fed into the other systems. Such interlocking
occurs commonly in complex overall systems.
We can make the various systems independent,
but this is perhaps primarily an analysis expe~
dient.

Measurements

(6) There is still an important need for study
of the effects of errors in measurement, of finite
amounts of data, and of various techniques for
processing the data. For example, if gain and
phase characteristics are measured only over the
useful band of frequencies, how can these data be
extrapolated to include the larger bandwidth of
importance because of stability considerations ?
or, what is the effect of small errors in transient
response measurements ?

CONCLUDING COMMENT

To attempt to justify the importance of net-
work theory in feedback—-control-system design
seems unnecessary, since the design theory is in
large measure a direct application of the funda-
mental concepts of network theory. In the light
of the history of feedback control, we can antici-
pate that the network-theory research and studies
of today will provide the foundations for the con-
trol-system design techniques of a decade hence.
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SOME THEOREMS APPLICABLE TO THE PROBLEM OF
STABILITY IN LINEAR SYSTEMS

by

John L. Bower, Autonetics Division
North American Aviation, Inc.
Downey, California

Summary

The equivalence of the frequency-domein and
time-domain criteria for the stability of linear
systems fails in the case of certain oscillatory
weighting functions. By excluding such functions
on the basls that they can have no physical exis-
tence, it becomes possible to prove that the
frequency~domain criteria are valid.

Introduction

In the design of feedback control systems,
no single aspect has received as extensive treat-
ment as the determination of the degree of
stability. Most of the theory of stability of
linear systems is based on the criterion that a
system 1s stable if its response to a hypotheti-
cal impulse driving function is of such form as
to be integrable in absolute value up to t = O,
From this criterion others are derived, apply-
ing generally to the Laplace transform of the
impulse response, and leading to a determination
of whether or not the singularities of the trans-
form lie entirely within the right half-plane.

While the two criteria are equivalent for
many classes of impulse response, examples can be
found that satisfy the conditions on the trans-
form but not those on the time function. The
most troublesome functions of this type are those
values alternate with a steadily diminishing
period as t —» co. Since the "frequency' of such
a function increases without limit it clearly
violates the restriction of physical realizabil-
ity imposed on loop gain in most freguency-domein
criteria: that the loop gain must vanish at infi-
nite frequency. This restriction, however, is
ordinarily injected in such a way as to leave
open the question as to whether it is necessary
only because we otherwise would not be able to
overcome certain purely mathematical obstacles.

In the use of criteria based on the location
of singularities of the transform of the impulse
response, one encounters awkward limitations on
the form gf the transform and of the impulse
response. In an attempt to avoid these limita-
tions and still retain the validity and conven-
ience of stability criteria based on the location
of singularities of the transform, the theorems
of this paper were proven. It is hoped that the
manner in which the physical realizability restric-
tion is introduced may shed further light on the
real need for the restriction in order to validate
the frequency-response stability criteria.

1- See "Theory of Servomechanisms" by James,
Nichols, & Phillips, McGraw Hill, 1947.

We shall find it convenient to define the
following:

w(t) is a function of t integrable
and bounded over every finite
interval of t for t» 0, and such
that where (tkfl-tkk T,

t ol
1 f Klagfw(t) <oltyer-tx), (1)
et ) gy

(aoo, L>ip v 00p 6> O,

tk and tk +] 8Te respectively the

kth and (k+l)th points of reversal
of sign of w(t) defined by the follow-
ing for each integral value of k:

Y ten1
Jdt ) | . f e W) | <o (a)
tea1 h"
and
el Tkn
[dt w(t) =fdt [ w(e) (b))j
Ty ty
a0 -5t
H(s)E/ dt e w(t); and (2)
[o]
[e o]
J =/o dtfw(t)] . (3)

Lebesgue integration is assumed throughout. The
first theorem is:

(I) A SUFFICIENT CONDITION FOR THE CONVERGENCE
OF J TO A FINITE LIMIT IS THAT H(s) CONVERGE
AND BE REGULAR ON AND TO THE RIGHT OF THE
IMAGINARY AXIS.

(II) IF J CONVERGES, THEN H(s) IS BOUNDED ON THE
IMAGINARY AXIS, AND REGULAR IN THE HALF-
PLANE Re(s) > O.

Before entering upon the proof, it is per-
tinent to note that some restriction on w(tsY of
the nature of (1) is necessary, since functions
exist that, in the absence of such restriction,
would violate part I of the theorem.
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Such a function is w(t)= e(h-a)in et (0¢a¢n),
vwhose abscissa of convergence is -a, but whose
abscissa of absolute convergence is < h-a. For
this function, H(s) is regular in the right half-
plane and on the axis™< although the integral J
clearly does not converge. The importance of the
restriction (1) will be appreciated more fully
after the discussion of application of the the-
orem to stability problems.

We now turn to the proof of the theorem. We
make use of the existence of the derivatives of
H(s) of all orders, n > O:

d4Hs) - [ %8t e (t)® w(t) . (%)
o]

dsd

By our assumption in (I), the integral in (4)
must converge for values of s in the neighborhood
of the origin, or,

00 n K-1
l [dt («t)" w(t){= [ 51 + I,5l(00.(5)
o ko

In this operation, we have broken up the infinite
integral into a series of finite integrals, Iy
and I,,, between the K successive points 1y, at
which the weighting function, w(t), changes sign,
except that t,= 0. The terms of the series are:

t oo
I = [ B(-)%(8) 5 Tog= / at(-+)'w(e).  (6)
tx tx

Note that I, does not occur when K= oo.

There are three mutually exclusive cases,
corresponding to the possible types of weighting
functions. They are as follows:

(a) w(t) is zero identically beyond scme
finite v.lue of t (regirdless of the
owber of ch.nges of sign of w(t));

(B) for every finite t' there exists an
interval of non-zero extent on which
t> t' and w(t)# O, and either

1l K is finite, or

2 K is infinite (w(t) oscillates
in sign to oo).

2- See D. V. Widder, "The Laplace Transform”,
Er61nceton University Press, 1946, Pages
- 57.

In case (A), the integrability of w(t) over every
finite intervel immediately gives us J < co. In
case (B-1), the integral of the absolute value of
w(t) between the limits O and ty must be bounded
as in case (A), and we see from (5) withn=10

that
|Im|=’4d:°w(t) l: ﬂ:gt [we)] < o0 . ()

This completes the proof of the first part of the
theorem for cases (A) and (B-1).

In case (B-2), the I, must form a convergent
alternating series, but this alone does not suf-
fice to complete the proof. We note that the
integral J can be written in series form similar
to (5), with the same upper and lower limits of
integration for each term. These terms are
limited by one of two restrictions, depending
upen whether or note the sequence, t,, tends to
diverge slowly or rapidly. For our purposes,
"slow divergence" exists when, for positive pum-
bers p and q to be defined, (ty,;-tx) <pki™,
while "rapid divergence" describes the~other
cases. We shall choose a suitaeble value of n for
use in (5) and shov that the selection of the
largest possible terms for the series wnder the
restrictions: (a) of integrability over every
finite range; (b) of (1), and (c¢) of (5) must
yield a convergent result.

For the convergent series (5), there must

exist an upper bound on the terms, M, dependent
on n. Then

o tl«;+1
M, > ‘Ikl 2t titlw(t)l . (8)

n
Division of both sides of this equation by i
yields the first of two restrictions on the

EME

Tre1
/dtrw(t)l < ’% (9)
" t,

LA, and
n-1

are able, therefore, to take g such that
14+ <q< & « Purther we take
1+ +n 1+A

We now select n such that

n

() () T

vhere z = (L +A)(1 - q)/n.




Now, by the use of (1), for a "slowly diverging"
sequence of t,, we have

tk‘l'l 1+ o
ﬂitlw(t)‘ﬁ kg%T"?)Tl‘-E)J vhen (ty,.-t T, (10)

and (ty,;-t) < pxd.

The lower of the two bounds on the integral in
(9) and (10) is found to be provided by (9) only
when

M, 1/n
ol w
Gp

with z defined as before. By taking the values
tx less than this limit, for each k, only the
greater of the two bounds, given by (10), applies.
This selection of t, is possible for k) 1, since
for t, equal to the right-hand member of (11),
and flér p and g chosen above,

2
i/n [ z-1. z(z-1)k"
by taf D .E"z + =g t... l.(12)
Py

The series in brackets here is an alternating one,
since , ¢ T%(| and converges for k>1, 8o

that the error in neglecting all terms beyond the
first is less than the second term (the terms
being monotonically decreasing in magnitude).

For k) 1, therefore,

M 1/n z -1
21, (1 - o) okt
ta b e ) 0 U Crk™ 7, (13)
according to our choice of n, g, and p.

Thus, we have shown that the largest possi-
ble terms of the series I, have their values
limited by (10), and so must form a convergent
series, since each bound is proportional to k¥,
where rp> 1.

For the "rapidly diverging" case where

- a-1 ) ve ha a1,
(tyyy=tx)> Pk, we have tk"’l)r - BT

oo
Z =
Now, the series -1 g-1\n, hes terms
’ k:o(fZ% pr ) ’

less, term by term, than those of (9). Further,

since

10

ZEE:T__—: 1+ Py , Wwhich for
q-1 q-1
r Z r
r=0 ? ro
q-1
k>N 1is greater than |1 4.0
° k-1
o}
=0

Then both series converge by application of the
ratio test.

The terms for (t,_.-t,.) > T pose no problem,
since they must be ﬁ.ﬂ' e ¥n number and represent
integration over a finite interval of t, and
therefore must be bounded in their sum accord
to the original restrictions on the form of w(t).
Thus, we have shown that J converges in case
(B-ZS , and have completed the proof of part I of
the theorem. While we have made direct use of
the properties of H(8) only at the origin, the
convergence and analyticity of H(s) there demand
that it be regular elsewhere on tl"_zg imaginary
axis and in the right half-plasne, - 8o that the
hypothesis cannot actually be weakened.

In proving part II, we note that if J con-
verges, H(s) must converge for Re(s) > 0, and by
the reference just cited, must be regular to the
right of the imaginary axis. Finally, since

|n(s)| <7 (1%)

for Re(s) 2 0, it is clear that the transform,
H(s), must be bounded on the imaginary axis. This
completes the proof of the theorem.

THEOREM II: THERE EXTSTS AT LEAST ONE SINGULAR-
ITY ON THE ABSCISSA OF CONVERGENCE OF H(s) IF
THE ABSCISSA IS FINITE. Here again, we have three
cases to consider, depending upon the forms of
w(t), and will classify the cases as in the proof
of Theorem I. For case A, the theorem has already
been proven.-* Case Bl will be discussed later.
Case B2 calls for the use of a theorem of Delange
-Dstated for the case in which(t) is a given
complex function defined for t 2 0, and having
bounded variation on every finite interval. The

integral

00
f e'“d’?(t) is assumed to have a finite
o

3~ See Widder (2) page 57.

4- See Widder, page 58; also Doetsch, "Handbuch
der Laplace-Transformation Band I Theorie der
Laplace-Transformation" Birkhauser, Basel,
1950, page 153.

5- Delange, H., "Sur les singularites des inte-
grales de Laplace', Comptes Rendu Aced. Sci.,
Paris, v 233, pp 1413-1h1k (1951),

P,



abscissa of convergence,( ., and the function
represented by ihe integral is designated f£(s).
An approximate translation of the theorem is as
follows: We suppose that there exists a real
function Y/ (t] continuous for t greater than or
equal to a certain to positive or zero, and a
Treal number § satisfying O < ¢ ¢ /2, such that:
(1) for whatever t' and t" satisfying to ToctT,

the quantit ™
_igu_a.n__lft'e-iV/(u)dl?(u) hﬂg._n_a.r nt_o_f_

absolute value at most equal Lq‘ '¢ , or entirely

zero; \2) for whatever t' and L' greater than or
equal to to, [ (2] - Y (X)) & 1;% -t .
Then, T(s) possesses at least one sin, point
on the segment [¢ - ikC(g),0 , + 1kC(¢)] , where
C($) is a positive number uniquely dependent on
¢. Delenge adds that if C s taken as small
as possible, it must be a non-decreasing function
of ¢, which tends to oo as ¢ tends to Tr/2.

It is necessary only to show that there
exists a real continuous function ¥/ (t) and a
real constant ¢, O £ ${TI/2 such that the
ar nt of "

gume /dz e'i'/(u)w(u) does not exceed ¢ in

tl

absolute value when t' and t" are large; and such
that]y (") -Y(t')] ¢ ¥]t" - t'|, vhere Y 1s
some positive real constant. In searching for a
suitable ¥ (t) ve are guided by the fact that the
argument of w(t) itself (considered as a complex
function) oscillates between zero and T et the
points of alternation in sign, tx. We shall
assume, arbitrarily, that when k is odd, the sign
of w(ts changes from positive to negative. A
satisfactory function is, then,

Y() = M r (-1 aing =ty o, (35)
T e
with A =T vhen ty, -ty =T, and A=(t, -t )
when tk"l-tk< T.k ke tk
To see that the magnitude of the argument of the
above integral does not exceed in magnitude some
¢(Tf/2 it is only necessary to note that the
argument of the entire integrand is less than
/2 in magnitude for all t except on & set of
zero measure, and therefore the argument of the
integral cannot exceed scme mumber less thanT /2,

In regard to the second condition on s
we have

[ - Y| ¢ ﬁs Y erpre] oo

Therefore, this condition is met, with¥ = T

1

Case Bl calls for the same proof as B2 except that
for t> tK’

l// ()= M2+ (-1)¥™7 tann (t-ty)

Thus, the theorem is proved for all cases.

Physical Restrictions on w(t)

The restriction (1) on the form of w(t) can
be shown to be equivalent to a restriction on the
nature of the observable response of a physical
system to an impulse function. If, for example,
y(t) represents an observeble such as pressure,
current, voltage, velocity, etc., and x denotes
g disturbance on the system; and if y 1s uniquely
and linearly related to the history of x, we can
write

y(t)e /°° aTw(7).x(t = T). (18)
[e]

It is a justifiable assumption that for every
system, by teking sufficient pains to produce a
pulse of sufficiently short duration, x(t) can be
made to approximate to any desired degree the
effect of an impulse of finite area but of dura-
tion approaching zero. For such an excitation on
the system, it is clear that as the duration of
the pulse of x(t) is made to diminish,

y(t) —» w(t). (19)

For each type of observable quantity mentioned
above, as well as for others, there is an associ-
ated energy storage at the point of observation.
For example, in reading the value of a voltage on
a pair of terminels, one must recognize the exis-
tence of an electric field across them, whose
stored energy at any instant is proportional to
the square of the voltage. If we now compute the
average value of y over the interval between two
reversals of sign of w(t), we shall have

! Y
F R ftk at w(t) . (20)

Now, the average energy assoclated with y over
this interval equals or exceeds 2 , Therefore,
the peak power, P, involved in t¥e transfer of
energy into and out of the energy storage exceeds
the average energy divided by the time interval

tk+l-tk y Or
2

p 2 y .
btk

The possibility of occurrence of a true impulse
or Dirac delte function in w(t) is eliminated

(21)




immediately by the requirement that the energy
storage at the terminal be finite. Further, an
argument similar to the above assures the contin-
uity of w(t). An obvious manipulation of (20)
and (21) allows us to state the following
THEOREM III: FOR A TIME FUNCTION REPRESENTING
THE RESPONSE OF A LINEAR SYSTEM TO A PULSE EXCI-
TATION MEASURED AT A POINT INVOLVING FINITE ENERGY
STORAGE IN PROPORTION TO THE SQUARE OF THE OB-
SERVED QUANTITY, THE PROPERTIES (1) OBTAIN WITH
A = 1/2 AS THE PULSE APPROACHES THE FORM OF A
DIRAC DELTA FUNCTION,

Application to Stability Problems

It is possible to apply the foregoing
results to the problem of determining whether or
not w(t) represents the impulse response of a
stable system, when the available information is
contained in the transform, H(s).

In accordance with widely accepted defini-
tions, we say that A STABLE SYSTEM IS ONE WHOSE
RESPONSE TO ANY BOUNDED INPUT IS A BOUNDED OUTPUT
FUNCTION., ILinearity in the system is assumed, as
are the other broad restrictions of Theorem III,
throu@gout the following discussion. It can be
shown™ that the necessary and sufficient condi-
tion for stability of a linear system under the
above definition is that the integral of the
absolute value of w(t) over the interval (0,00)
converge. In making use of these principles, one
frequently finds it desirable to have the means
of relating the property of stability to charac-
teristics of H(s), the transform of w(t). Many
mathematical and engineering problems proceed
most conveniently in the complex frequency domain
to the point of solution, and to take full advan-
tage of this convenience it is necessary to have
available a criterion of stability stated in that
domain. In short, given a function of the com~
plex frequency s, one must have the means of
knowing whether or not it is the transform of a
stable impulse response. To provide such a
criterion, we shall assemble the results of
Theorems X, II, and IIT in the following form:
THEOREM IV: GIVEN A FUNCTION F(s), A SUFFICLENT
CONDITION FOR THE FUNCTION OF WHICH IT IS THE
TRANSFORM TO BE A STABLE WEIGHTING FUNCTION IS
THAT F(s) BE REGULAR IN THE RIGHT HALF OF THE
s-PLANE AND ON THE IMAGINARY AXIS, THE TRANS-
FORM OF A STABLE WEIGHTING FUNCTION IS BOUNDED ON
THE IMAGINARY AXIS AND REGULAR IN THE RIGHT HALF
OF THE s-PLANE.

It should be noted that the statement of the
theorem assumes that F(s) is of such form that it
is the transform of some time function. To prove
the first statement, we note by the second theorem

6- See H. H. James, N. B, Nichols, and
R. S, Phillips "Theory of Servomechanisms"
McGraw-Hill, 1947, page 38.
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that the abscissa of convergence must be negative
unless F(s) is entire. Thus, by Theorem I, the
weighting function must be stable, even when F(s)
is entire. (We recall that the hypotheses of
Theorem I are fulfilled by assumption of the con-
ditions of Theorem III.) This completes the
proof of the theorem, since the second part is a
re-statement of the second part of Theorem I.

The relation between the criterion of stabil-
ity just derived and those already in existence
deserves some comment. A large body of theory
has been developed~7 to provide graphical and
other methods of determining whether or not the
function F(s) possesses singularities in the
right half of the s-plane, and dealing, in
particular, with this problem in the case when
the system under study comprises one or more
feedback loops. In general these methods must
proceed on the assumption of the existence of a
theorem such as Theorem IV above, or must place
such restrictions on the time functions under
consideration as to insure that all singularities
of the closed-loop transfer function in the right
half of the s-plane are poles. An exception is
the classical work of Nyquist=7 which concerns
itself with the determination of stability or
lack thereof in a feedback system having a loop
impulse response of bounded variation and
absolutely integrable over the positive infinite
time domain. A derived condition is that the
loop gain function with harmonic excitation van-
ish ultimately with increasing frequency. This
condition must hold for any physical system,
whether considered as a loop transfer function
or as the general response under consideration in
Theorem III of this paper. The restriction of
greatest practical importance is that which
demands that the loop be stable when opened. In
view of these facts it would appear that a method
based on Theorem IV and capable of showing
whether or not the closed-loop transfer function
possesses the right properties in the right half-
plene and on the imaginary axis would provide
greater generality in certain respects.
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FEEDBACK SYSTEM SYNTHESIS BY THE INVERSE ROOT-LOCUS METHOD

John A. Aseltine
Systems Research Corporation
Van Nuys, California

Abstract

A concise procedure for root-locus analysis
of negative and positive feedback systems is
presented, The root-locus method is extended to
include the synthesis problem and is illustrated
by example. A new definition of feedback sign
based on dynamic system behavior is proposed.

Introduction

The root-locus method has been used exteni 2
sively in the analysis of closed-loop systems,” '
It will be seen below that the same techniques
used for analysis can be applied to the synthesis
problem, The qualitative use of the root-locus
method will be emphasized here, since the method
is often most useful as a first step prior to
computer study of a problem,

The conventional definitions of feedback
sign are based on static system performance
and become ambiguous in complex systems and in
the discussion of synthesis. A new convention
for the sign of the feedback has been adopted
for the reasons set forth in Appendix A. We
will call the feedback by the same sign as the
open loop transfer function when the latter
contains terms of the form (s - s5;) with all
coefficients of s terms positive.

The Root-Locus Method

Like all special methods of linear feed-
back system analysis, the root-locus method is
used to determine the positions of the roots of

1 +KG(s) =0, K=20 ()]
where s is a complex variable, This problem
arises in connection with the analysis of the
system shown in Figure 1., The closed loop trans-
fer function is

KIG(S)

S (2)
1 + K,G(s)

Y(s) =

The denominator of (2) is of the form of the left
side of (1), the + sign ir (1) corresponding to
negative feedback, and the minus to positive
feedback. Y(s) has zeros at the zeros of G(s)
and poles at the roots of equation (1), Since
G(s) is in practice usually available in factored
form, the principal problem arises in solving
equation (1), The root-locus method is a
graphical method for doing this. Evidently,

the requirements are that s satisfy
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feedback in almost every case.

|G(s)] =1 (3)
and, for negative feedback,
Z.[G(s)] = am, n odd ()

Y

K,G(s)

Fig., 1 Feedback System

The greatest utility in the method is that
equations (3) and (4) can be solved graphically
to yield loci of roots of (1) with K as a para-
meter, These loci can be constructed rapidly
and yield information relating both to steady-
state and transient behavior of the closed-loop
system,

One of the most useful features of the
method is that it provides rapid qualitative
evaluation of a_closed loop system., Of the many
rules available- for construction of loci from a
plot of the poles and zeros of G(s), the follow-
ing form a set which allows reasonably accurate
sketching of a root-locus diagram for negative
The open loop
poles and zeros are first plotted in the s-plane.

1. Along the real axis of s-plane, a locus
exists wherever total number of real poles and
real zeros to the right is odd.

2. Arrows indicating increasing K should be
placed on loci so that locus starts (K = 0) on
the poles of G(s) and ends (Kk»o°) on the zeros
{(which may be at o),

3. Whenever a locus leaves the real axis,
it must be accompanied by its complex conjugate.

4, Far from the origin, the loci are
straight lines with angles given by:




[No. of finite poles] -
[No. of finite zerosl angles
1 i
2 +T/2
3 £/,
; mT;/n, m odd

These asymptotes pass through the centroid of
the poles and zeros with the poles counted as
positive and zeros counted as negative masses.

In addition, it is useful to know that the
loci follow flow lines with poles taken as
sources and zeros as sinks, Examples are shown
in Figure 2, For a given value of K, the poles
of the closed-loop function Y(s) lie at some
set of positions on the loci.

X poie
S 2er0

/
/
el 4
and \\
onder \
poie

Fig. 2 Root Locus Examples - Negative Feedback

Having sketched the root-locus diagram, the
behavior of the closed-loop system can be pre-
dicted since the loci represent positions of
poles of the latter. At this pojnt, a more
accurate plot can be constructed® or the infor-
mation used to guide a computer study of the
system,
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Positive Feedback

In case the feedback is positive (i.e.,
positive open-loop transfer function when all
(s - s7) terms have positive coefficients for s),
the rules are modified slightly. The changes
are in rules 1 and 4, which become for positive
feedback:

(la) Loci exist on the real axis when the
number of real poles and real zeros to the right
is even.

(43) Angles of asymptotes are given by:

INo. of finite poles] -
INo. of finite zeros3 angles
1 0
2 o,
3 0, +2m/3
n mﬂ}m m even

Examples of root-locus plots for positive feed-
back systems are shown in Figure 3.

\
\
\
\
\
\
o= e g n
2w /
order /

Fig. 3 Root Locus Examples - Positive Feedback




Inverse Root-Locus Method

In the previous sections, we discussed the
problem of determining the closed-loop behavior
of a system, given the open loop transfer func-
tion. The synthesis problem is to find G(s),
given the closed-loop transfer function., To
this end we write the identity:

KG(s)
1 + KG(s) (5)

1% KG(s)
1 + KG(s)

KG(s)=

and note that it has the same form as (2). We
conclude that KG(s) has the same zeros as KG(s)
/@+ KG(s) ) and that the poles of KG(s) are at
the roots of the denominator of (5). The factor-
ing problem presented here is the same as the one
connected with equation (1), and the locus of
roots of the denominator of (5) can be drawn
using rules previously described.

The synthesis procedure for a transfer func-
tion with more poles than zeros begins with the
plotting of the poles and zeros of the desired
closed-loop system on the s-plane. The locus can
be drawn for either positive or negative feedback,
a positive feedback plot corresponding to the
synthesis of a negative feedback system, and vice
versa, For a given value of gain K, a set of
roots on the loci will be obtained. When these
are used to characterize the open-loop function
G(s), the feedback system will have the specified
poles and zeros.

When the number of zeros of the system to be
synthesized is equal to or greater than the num-
ber of poles the procedure is changed., The
changes are derived in the Appendix and are tabu-
lated below, We assume that the transfer function
to be synthesized is of the form

6(s) P+ a4 eee 4 a
1 + KG(s)

n 6)
s®+ by s+ cee 4y

Then the synthesis procedure can be summarized as
follows:

positive plot

yields system
with

[n < m |neq. feedback

neq. feedback, K< 1

pos. feedback,K> 1

m< n |pos. feedback

negative ploﬂ

yields syste
with

pos. feedback|

pos. feedback|
pos. feedback]

n = m*

*When n = m the locus passes through the point
at cowhen K = 1.

It should be pointed out that when n 2 m the
amplitude response of the synthesized system does
not diminish at high frequencies, making such
systems subject to noise saturation,

Illustrative Example

To illustrate the synthesis technique, let it
be desired to obtain a negative feedback system
with transfer function,

K(s + 2)
(s + 4) (s¢ + 8s + 32)

Y(s) = (7

The poles and zeros of Y(s) have been plotted in
Figure 4, and an inverse rQot-locus drawn. Using
conventional techniques,l' the values of K for
various points along the locus have been found.
Depending on the value of K specified, the open-
loop poles and zeros can be chosen. A set of
poles and zeros for K = 30 have been drawn in
Figure 5, and a conventional root-locus drawn, At
the K = 30 point on the conventional plot the
closed-~loop roots have the specified values of (7),

It can be shown that the loci in Figures 4
and S between the pole and the point K = 30 would
coincide if the two plots were drawn on the same
diagram,

Synthesis with Feedback-Path Transfer Function

The more general feedback system with transfer
function H(s) in the feedback path can be syn-
thesized by a simple extension of the preceding
method., The closed-loop transfer function is

Yi(s) = KG(s) (8)
1 + KG(s)H(s)

Now, if a function H(s) is chosen, G(s) can be
found as before by starting with poles and zeros
of Y, (s)H(s) from which KG(s)H(s) is determined.
Then, since H(s) has been specified previously, it
can be used to find KG(s) simply by superimposing
the poles and zeros of 1/h(s) on the KG(s)H(s)
plot.

Fig. 4 Synthesis Example



|

Fig. 5 Root-Locus Plot for Synthesized System

To illustrate the procedure, we consider the
problem of finding G(s) in the previous example,
but with H(s) = (s + 6). The inverse plot is
sketched in Figure 6, and & typical G(s) might
have poles and zeros as indicated in Figure 7,
where superimposing 1/H(s) = 1/(s + 6) has re-
moved the zero at s = -6.

Fig. 6 Synthesis with H(s)

'~~~x\ -*
-~
-

4 4 Py
v

--X-"1

Fig. 7 Open-loop G(s) for
Example of Fig. 6
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Conclusions

The use of inverse root-locus for synthesis
is especially attractive from the point of view
of simplicity and amount of information which can
be obtained quickly. 1In addition to its useful-
ness in synthesizing feedback amplifiers and
other devices, it is also useful in determining
open-loop characteristics from measured closed-
loop data (e.g., airframe characteristics from
measured autopilot-airframe response). Like
root-locus, the inverse method keeps the system
poles and zeros apparent during analytical work,
and provides the designer with a geometric pic-
ture lacking in algebraic methods, Also like
root-locus, it is a trial and error method with
the rules presented here giving a first (usually
good) approximation.

Appendix

A, Feedback Sign Convention

The'angle condition (4) is

= [(5-5))(s-53) - (s-sp)) . Lqr (9)
<fets) ‘{(s-sg)(s-s4)---(s-sm)l' "

The rules for plotting the root-locus are based
on the measurement of angles like 6 in the s-
plane as shown in Figure 8:

s-elane

"‘S|

Fig, 8 s-plane plot for angle condition

Therefore, we require that G(s) contain terms of
the form (s - sj) with positive coefficient for
s. If terms like (-s - s}) occur,  they can be
put in proper form by changing the sign of the
transfer function. This leads us to establish
the convention:

The sign of the feedback is the same as

the sign of the open-loop transfer function
when all terms in the latter are of the
form (s - s,) with all coefficients of

S positive, ’

The angle condition now can be written

—

< = n odd for neg. feedback
o E;(S)J nw, {n even for pos. feedback (10)
T86355}§¥8m§?15 may occur, for example, in multi-




