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Preface

Switching theory is recognized as the foundation for computer science and digital
design. It is, therefore, no surprise that almost every major university in the nation
offers a course, or a sequence of two courses, in the departments of computer science,
electrical engineering, and/or applied mathematics. This course is usually a require-
ment for all graduate students who are pursuing an advanced degree in computer
science, digital systems, or combinatory mathematics. This book is a compilation of
classnotes of a course on switching theory taught by the author for the past eight
years. Senior and graduate students taking this course were familiar with the follow-
ing subjects:

Truth tables.
Logic gates.
Karnaugh maps.
Switching function minimization methods.
Flip-flops.
6. Basic digital devices, such as, counters, registers, basic binary adders and
subtractors, etc.

s e

This was, in fact, the only background required for this course. In selecting a textbook
for this course, the authot was 3 little surprised to find no textbooks on switching theory
at this level which were published since 1970. However, there has been a tremendous
amount of research in the area since 1970. It seemed apparent to this author that a
textbook including these recent research results was needed. This book was born out
of this need.

This book contains twelve chapters which comprise four parts:

1. Boolean Algebra and Boolean Differential Calculus (Chapters 1, 2, and 3).
2. Combinational Logic (Chapters 4, 5, and 6).

3. Sequential Logic (Chapters 7, 8, 9, and 10).

4. Digital Design (Chapters 11, 12).

A brief description by chapter is as follows.
Chapter 1 describes Boolean algebra and its properties. 1t provides the mathemat-
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ical foundation of switching theory and digital design. A generalization of two-valued
Boolean algebra or switching algebra is introduced in Chapter 2. In this generalized
algebra, gvery element is presented by a binary vector and two new operations; the
rotation -operation and the generalized complement operation are defined. It is shown
that DeMorgan’s theorem, Shannon’s theorem, and the expansion theorem are general-
ized into more general forms which include their cofresponding ordinary versions as
special cases. Chapter 3 introduces the partial derivative, the partial differential, the
total differential, and the total variation of a Boolean function. Many properties of
these differential and variational operators of Boolean functions are presented. Based
on the partial derivative of a Boolean function, the MacLaurin expansion and the
Taylor expansion of a Boolean function are derived; the expansions are analogous to
those of real functions of real variables. In addition, two convenient ways for com-
puting Boolean derivatives and differentials of a switching function are included.

Special switching functions are useful in switching circuit design. Four special
functions, monotonic, threshold, symmetric, and functionally complete functions are
presented in Chapter 4. Many properties of these functions and algorithms for deter-
mining them are included. Chapter S presents multivalued switching functions, par-
ticularly their analysis and realization. As the number of components in an integrated
circuit (IC) chip increases, the need for circuit testing becomes a necessary part of the
manufacturing process. Several methods for deriving fault detection experiments for
single and multiple logic faults in combinational circuits are presented in Chapter 6.
Two computer-oriented algorithms, D-ALGorithm version II (DALG-II) and TEST-
DETECT, are included which are applicable to the fault detection test generation for
large combinational circuits.

In Chapter 7, three important problems, the state minimization, the state assign-
ment, and the machine decomposition of sequential machines, are solved by the use of
the substitution property (S. P.) partition of the states. A systematic representation of
the Rabin-Scott machine, known as the regular expression, is presented in Chapter 8.
This includes both the deterministic and the nondeterministic sequential machines.
Two types of equivalence, indistinguishability equivalence and tape equivalence, are
discussed. It is shown that for deterministic sequential machines, the two imply each
other. A systematic procedure for obtaining a regular expression from a transition
diagram and a procedure for constructing a transition diagram from a regular expres-
sion are presented. In Chapter 9, it is shown that any sequential machine can be phys-
ically realized by a clocked sequential circuit and obtained by it. The realizations of
sequential machines using the pulse-mode and fundamental-mode circuits are also
studied in detail. The analysis and design of pulse-mode sequential circuits are similar
to those of clocked sequential circuits. But the analysis and design of fundamental-
mode sequential circuits are different from those of clocked sequential circuits. The
two undesirable transient phenomena of fundamental circuits, race and hazards and
their elimination, are discussed. Chapter 10 introduces a method for designing a
fault-detection experiment for a sequential machine. It is shown that the problem of
designing a fault-detection experiment is actually a restricted problem of machine
identification. The construction of a fault-detection experiment consists of three
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phases: the initialization phase, the state identification phase, and the transition
verification phase. They are described in detail and are illustrated by examples.

_The last two chapters are devoted to the discussion of modeérn digital (circuits
‘and systems) design. Chapter 11 describes digital design using digital integrated cir-
cuits. In particular, digital design using various types of MSI and LSI integrated cir-
cuits/ is presented. Chapter 12 presents the digital design using microprocessors—the
state-of-art. The basic design procedure is outlined and the hardwares and softwares
of commonly used microprocessors are presented. Several digital design microcompu-
ter systems are used to illustrate this new digital design method.

Many of the materials included in this book are recent research results which have
never been included in any textbooks. v

It is the author’s experience that students always welcome good examples, par-
ticularly in illustrating difficult concepts and theory. A special feature of this book is
that it includes many such examples throughout. In order to make sure that the student
not only understands the theory but also knows how to apply it, a large number of
exercises are given at the end of almost every section.

A picture is worth a thousand words. Figures, tables, and flow-charts are given
throughout the book to help the reader to “‘see through” the theory.

I would like to thank Dr. M. E. Van Valkenburg, Dr. K. S. Fu, Dr. H. S. Hayre,
and Dr. M. S. Ghausi for their advice and friendship. Special thanks are due to Dr.
W. R. Upthegrpve and Dr. C. R. Haden for their encouragement and support. I am
also thankful to Mrs. Mary-Allen Kanak for preparing the drawings of Chapters 11
and 12, and to Mr. Mike Weible for proofreading the manuscript.

SaMUEL C. Lee

Norman, Oklahoma
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Boolean Algebra
and Boolean Function

Switching theory deals primarily with the analysis(characterization, minimization,
etc.) and synthesis (realization) of a special type of function. defined on a special type
of algebra known as switching algebra. Switching algebra is. in turn, a special type of
Boolean algebra; and the special type of function. known as the swirching function, is
a mapping defined on switching algebra. Switching algebra that contains two elements,
® and 1. is the two-element Boolean algebra (the simplest nondegenerate Boolean
algebra). To understand how switching algebra is derived, one must first learn Boolean
algebra, its mathematical foundation. In fact, Boolean algebra is the mathematical
foundation of the entire field of switching theory.

The algebraic structure of Boolean algebra is derived from the ordered set. We
begin the chapter by introducing ordered sets and the one-to-one relationship between
elements in set theory and elements in algebra. Before introducing Boolean algebra,
we first define lartice. which is a special subclass of the class of ordered sets. Boolean
algebra is a special class of a subclass of lattices known as the complemented distributive
lattice, or the Boolean lattice. Important properties of Boolean algebra are discussed
in detail. Finally, the formal definition of Boolean function and its canonical forms
are presented. The existence of the canonical forms for every Boolean function pro-
vides us with a convenient means of determining the equivalence between two Boolean
functions and with a basis for deriving switching-function minimization methods,
which will be discussed in Chapter 2.

1.1 Sets, Ordered Sets, and Algebras

Set theory is often referred to as the “root™ of mathematics. We can consider every
branch of mathematics to be a study of sets of objects of one kind or another. For
instance, roughly speaking. geometry is a study of sets of points. Algebra is concerned
with sets of numbers and operations on those sets. Analysis deals mainly with sets of
functions. The study of sets and their use in the foundations of mathematics was begun
in the latter part of the nineteenth century by the German mathematician Georg
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Cantor (1845-1918). Since then, set theory has unified many seemingly disconnected
ideas and has, in an elegant and systematic way, helped to reduce many mathematical
concepts to their logical foundations.

The objectives of this section are threefold. The first is to serve as a review of
some of the relevant materials in set theory. The second is to study three types of order-
ing: partial ordering, total ordering (a-special case of partial ordering), and well-order-
ing (a special case of total ordering), and their corresponding types of sets. The third is
to show the analogous quantities among sets, ordered sets, and algebras.

A set is a collection of objects in which nothing special is assumed about the nature
of the individual objects. The individual objects in the collection are called elements or
members of the set, and they are said 1o belong to (or to be contained in) the set. A group
of people, a bunch of flowers, and a sequence of numbers are examples of sets. Here,
people, flowers, and nambers are elements or members of these sets. It is important to
know that a set itself may also be an element of some other set. For example. a line is
a set of points; the set of all lines in the plane is a set of sets of points. In fact, a set
can be a set of sets of sets, and so on. Let A4 be a set and x and y be elements of A4.
Define the relation “x < y” as “y includes x” and the relation “x < y” as “y strictly
includes x.”

DEFINITION 1.1.1

A relation < on a set A is said to be a partial ordering on A if it satisfies the follow-
ing axioms.
(01) Reflexive: For all x € 4, x < x.
(02) Antisymmetric: If x,y € 4, x <y, and y < x, then x = y.
(03) Transitive: If x,y.z € 4, x <y, and y < z, then x <'z.
A set P over which a relation < of partial ordering is defined is called a partially
ordered set, or a poset.

In the definition, the reason for qualifying “partial” is that some questions about
order may be left unanswered.

DEFINITION 1.1.2

A relation R on A is said to be connected whenever x,y € A implies that x < y or
y<x

From Definitions 1.1.1 and 1.1.2, we define:

DEFINITION 1.1.3

A relation < on a set A is said to be a total ordering of A if (a) it is a partial order-
ing of A, and (b) in addition, it satisfies the following axiom:
(04) Connected: Whenever x,y € A implies that x < y or y < x.
A set C over which a relation of total ordering is defined is called a totally ordered set,
or a simply ordered set, or a chain. '
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As mentioned before, the elements of a set may themselves be sets. A special class
of such sets is the power set.

DEFINITION 1.1.4

Let A be a given set. The power set of A, denoted by P(A), is a family (set) of
sets such that when X < A4, then X € P(4). Symbolically, P(4) = {X| X < A}.

Example 1.1.1
The power set of the empty set ¥ is a singleton {(7}.

Example 1.1.2
Let 4 = {a, b, c}. The power set of A4 is

P(4) = {, {a}, (b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}}

THEOREM 1.1.1
Prove that if a set A has exactly n elements, then P(4) will have exactly 2" elements.

Proof:  One way of proving this theorem is to tabulate the number of possible subsets of
A as follows:

TABLE 1.1.1 Number of Possible Subsets of a Set 4
with n Elements

Number of elements contained Number of
in a subset of A subsets
0 Ch
1 Ch
n ) Ch

. n!
(C‘ it(n —i)l)
Thus, the total number of subsets of 4is C3 + C7 + ... + C2. From the binomial theorem,
A+xP=Cy+Clx+Cix2 +...+ Cx
where x is a real number and # is a positive integer. When we let x = 1 in the expression above
we find that C3 + C7 + C3 + ... + C3 = 27 Hence, the theorem is proved.
Another, more intuitive proof may be given as follows: Each element of A is either in

or is not in some subset. Thus, there are n independent binary choices, or 27 ways to choose
a subset. [}t ’

1l shows the end of a proof.
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We sometimes use the symbol (4, <) to denote a poset (chain), where A4 is a set
and < is a partial (total) ordering relation in 4. Before we proceed further, let us see’
some simple examples of posets and chains.

Example 1.1.3

Let A be a set. The set-theoretic inclusion relation < is a partial ordering in the power
set P(A). It is a total ordering if 4 is an empty set or a singleton.

Example 1.1.4

Another interesting example of a relation of partial ordering is arithmetic divisibility.
Let A4 be a set of divisors of 100: 4 = {1, 2,4, 5, 10, 20, 25, 50, 100}. Define a relation
“x < y"as “xisadivisor of y.” We can indicate this relation among the elements of 4 by using
an inclusion diagram (Fig. 1.1.1). It is obvious that the relation “x is a divisor of y” is a partial
ordering relation in 4, not a total ordering relation, because

2 and 5
4,10, and 25
20 and 50
are not related by this relation. ’
100
/ \
50 20
25/ \10/ \4
\5/ \2/
N / Fig. 1.1.1 The inclusion diagram of

1 (A, <) of Example 1.1.4.

Exarhple 1.1.5

Now, if we consider the same relation “x << y” for “x is a divisor of y,” but the set A is
the set of divisors of 8, that is, 4 = {1, 2, 4, 8}, then the relation < is a total-ordering relation
in A, as shown in Fig. 1.1.2,

8
4
2
I Fig. 1.1.2 The inclusion diagram of
1 (A, <) of Example 1.1.5.

In a poset A. if Bis a nonempty subset of 4 and b, € B, we call b, a least element
of Bif by < b, for all b €. B; and we call b, a minimal element of B if there is no
b € Bsuchthatb < b,. A least elem=nt is necessarily minimal; but a minimal element
need not be a least element. because a partial-ordering relation does not imply con-
nected.
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A greatest element and maximal element are defined in the corresponding way.
By axiom 02, B can have at most one least and one greatest element, whereas it can
have many minimal and maximal elements. The least and greatest elements of a poset
are denoted by 0 and 1, respectively, whenever they exist.

From the definition of partial ordering, the following consequence is immediate.

THEOREM 1.1.2

Any finite subset X of a poset P has minimal and maximal elements.

Proof: Suppose that X is a singleton X = {x,]}. By the first condition of partial ordering,
x; < xy, x; may be considered as both a minimal element and a maximal element in X. If
X contains two elements, X = {x;, x,}. There are two possible cases. One is that x,, x, are
related (i.e., either x; < x, or x, < x,); hence, one is a minimal element and the other is a
maximal element. Another case is that x;, x, are unrelated. In this case, x;, x, may be con-
sidered as both minimal and maximal elements in X. The induction of this argument for X

containing n finite number of elemehts should be clear. |
From the definition of total ordering, it follows immediately that

THEOREM 1.1.3

For a chain, the notions of minimal and least (maximal and greatest) are equiva-
lent. Hence, any finite chain has a least (first) and a greatest (last) element.

Proof:  Since a least (greatest) element is necessarily minimal (maximal), we need only
show that in a chain, a minimal (maximal) element is also a least (gaeatest) efement of the
chain. Let C be a chain. By Theorem 1.1.2, C has minimal and maximal elements. Let a be a
minimal element of C (i.e., there is no x in C such that x < a). By axiom 04, x > a for every
xin A. Hence, a is also a least element of C. The proof that a maximal element of 4 is also
a greatest element of A follows similarly. §

Example 1.1.6

In Example 1.1.4, consider a subset B of 4, B = {4, 5, 10, 20, 25, 50}, as shown in Fig.
1.1.3. It is clear that B is a poset and has minimal elements 4 and 5 and maximal elements 20
and 50.

Fig. 1.1.3 The inclusion diagram of \ /

(B, <<) of Example 1.1.6.

Note that in Example 1.1.5 the element 1 is the least (first) element and 8 is the
greatest (last) element.
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DEFINITION 1.1.6

Let S and T be two sets (algebraic systems). If there exists a one-to-one correspon-
dence between S and T, the correspondence is called an isomorphism, S and T are said
to be isomorphic, or one set (system) is said to be isomorphic to the other. If the
correspondence is not one-to-one, but many-to-one from S to 7, the correspondence is
called a homomorphism, or S is said to be hormomorphic to T.

From Theorem 1.1.3 it follows that

THEOREM 1.1.4

Every finite chain of k elements is isomorphic to the ordered set N, = {1,2,...,k]},
where k is a positive integer. In other words, there always exists a mapping f from a
chain C of k elements to N,.

" Proof: By Theorem 1.1.3 in C there exists a least and a greatest element. Let f map the
least element of C to 1 and the least of the remaining elements into 2, and so on. Since both
the chain C and N, have the same number of elements, the greatest element of C, in this way,
will be mapped to the greatest element & 'in N;. Hence, the theorem is proved. [}

The algebraic structure of a poset may be extended to a set of ordered pairs.

THEOREM 1.1.5
Let P be the Cartesian product of two posets 4 and B. Define an inclusion relation
as
(a,. b)) < (a,b,) iffa,<a,inaandb, <b,inB

The set P with the product-inclusion relation is a poset. More generaily, if P is
the Cartesian product 4, X 4, X ... X A, with an ordering relation defined as
(aj.ay,...,a)< (@} a,, ... ,a)iffa, <ajind, a, < ayinA4,,...,a,<d ind,,
then the set P with the product-inclusion relation is a poset.

Proof: The proof is evident.

Example 1.1.7

"LetA=1{1,2,3} and B = {4, S, 10, 20, 25, 50} be two posets with ordering relation
defined by arithmetic divisibility. The inclusion diagram for A4 is shown in Fig. 1.1.4; the
inclusion diagram of B was shown in Fig. 1.1.3. The inclusion diagram of the Cartesian prod-
uct A x B with the product-inclusion relation defined above is given in Fig. 1.1.5(a), and

2 3

Fig. 1.1.4 The inclusion diagram of
1 (A, <) of Zxample 1.1.7.
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(50, 2) {50, 3) {20, 2} (20, 3)
(25, 2) (50, 1) (25, 3) (10,2) (4,2) (20,1) (10,3} (4,3)

{5, 2) {25, 1} {10, 1) {5, 3) 4, 1)

(5,1)
(a)
(50, 2) (20, 2) (50, 3) (20, 3)
{25,2)  (10,2) (4,2) (50, 1) (20, 1) (25, 3) {10, 3) 14,3)
(5, 2) (25, 1) (10,1  (4,1) {5, 3)
5, 1)
(b)

Fig. 1.1.5 (a) The inclusion diagram of the Cartesian product
A x B of Example 1.1.7. (b) A more systematic way of generating
the inclusion diagram of the Cartesian product A x B of Example
1.1.7.
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a more systematic way of generating this inclusion diagram is shown in Fig. 1.1.5(b). From
these diagrams, it is seen that the set A x B is a poset.

Now we introduce the third type of ordering.

DEFINITION 1.1.6

A relation < on a set A is said to be a well-ordering of A if (a) it is a total Ordering
of A, and (b) it is such that every nonempty subset of 4 has a least element.

Here are several simple examples of well-ordered sets. In the, first example, we
demonstrate that a totally ordered set need not be well ordered.

Example 1.1.8

Let Q,Z,Z., and Z, be the sets of rational numbers, integers, even integers, and odd
integers, respectively. The set R! of all real numbers is totally ordered by the arithmetical
relation <y but neither 1n R! nor in its subsets Q, Z. Z,, Z,, etc., is there any least element. '

Example 1.1.9
The set N of natural numbers with the arithmetical relation <C is a well-ordered set.

Example 1.1.10

The set P = {{A4,}, {4, A,}, {41, A;, 45}, . . .} with the set-theoretic inclusion relation
< is a well-ordered set.

Now we want to show that ordered sets provide a link between sets and algebras.
We begin this discussion with the following definition.

DEFINITION 1.1.7

_ Let P be a poset and x and y be two elements of 4. An element b in P is said to be
a lower bound of x and yif b << x and b < y. An element m in P is said to be a greatest
lower bound (g.1.b.) of x and y if m <C x and m << y, b < m for all b such that b < x
and b < y. Dually, we define an element u in P to be an upper bound of x and y if
x < wand y < u, and an element / in P to be a least upper bound (1.u.b.) of x and y if
x<land y < I, I < ufor all u such that x < wuand y < .

Now We define:

DEFINITION 1.1.8

An element m in Pis a meet of x and y if it is a g.1.b. of x and y. An element /
in Pis a join of x and y if it is a Lu.b. of x and y. We shall denote the meet and j _]011’1
of x and y by m = x " yand /= x U y, respectively.t

The sy{nbols “N" and “U” are called “cap” and “cup” by some authors.
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It is worth noting that

1. For given x and y, the meet and join are unigue if they exist.

2. Meet and join are order duals of each other. By order dual. we mean that the
definition of meet may be obtained by the definition of join simply by replacing the
relation x << y by its converse, and vice versa.

The second property is obvious from Definitions 1.1.7 and 1.1.8. The proof of
the first property is as follows. Suppose that m and m’ are both meets of x and y.
Definition 1.1.7 implies that m << m’ and m’ << m. By the antisymmetry axiom of
partial ordering, m’ should be equal to m. Hence, a meet. when it exists, is unique. By
a similar argument, a join of x and y is also unique when it exists. We shall use the
symbols O and / to denote the (unique) least and greatest elements of a partially
ordered set whenever they exist.

We can show, among other properties, that the meet and join operations satisfy
the absorption property: ‘

xNxUy)=x

xUxNy)=x

The proofs of these identities will be given in the next section. Here, we just use them
as examples to show the analogy between sets and algebras. The role that ordered sets
play in linking sets and algebras is shown in Table 1.1.2.

TABLE 1.1.2 From Sets to Algebras

Algebras

Numbers ' Integers

or symbols or
Sets Ordered sets in general rational numbers
A x 2 a
8 y b b
N N . .
Y v . + +

AN(AUB)=A xN(xUy)=x a-(a+b)=glb.[alub.(a b)] =2

&+(a + b) = min [a, max (a, b)] = a
AU(ANB)=A xU(xNy)=x 8+ a-b=)ub.la,glb.(s b)] =a
. &8+ a-b=max [a min (3, b)] = a

The analogous quantities among sets, ordered sets, and algebras are tabulated in
Table 1.1.3.



