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Preface

The study of synthetic polypeptides has proceeded with increasing in-
tensity in the post-war years, and now appears to have reached a stage at
which a comprehensive survey is justified and desirable. This is the excuse
for writing the present book. It will be unnecessary to tell potential readers
that the peculiar interest attached to synthetic polypeptides lies in their
relation to the proteins. Although this matter is treated specifically only in
the last chapter, it has been continually in our minds during writing and,
we hope, will have left its imprint upon the whole work. The interest in poly-
peptides is not confined to their relation to proteins; they constitute a class
of high polymers with unique characteristics, exhibiting with unusual
clarity the relationship between properties and molecular structure. Their
structure has been studied extensively by infrared and X-ray methods, which
are now being applied with increasing precision to high polymers. We have
therefore included some account of the fundamental principles of these
techniques and their application to the peculiar problems posed by fibrous
materials. The theme as we have developed it should, we venture to believe,
interest those who work in the difficult but fascinating fields of protein
structure and properties, whether on biochemical, medical, or physico-
chemical aspects, and to all who are concerned generally with high polymers.

In high polymer research, experience shows that advances follow most
readily from concerted attacks by all available techniques; we have there-
fore found it necessary to discuss in detail an unusually wide range of topics.
In a book of reasonable size it is clearly impossible to carry the development
of each from first principles to the current position. However, we have tried
to effect a compromise between this and the omission of all elementary
material. The book generally can be read by all who have a basic interest
and training in the natural sciences; the chapters on X-ray diffraction studies
assume, however, an acquaintance with the nomenclature of crystal geometry.

We are indebted to many of our colleagues in the laboratories of
Courtaulds Ltd. for much invaluable help in the preparation of this book.
In particular we wish to thank Dr. S. G. Waley of the Nuffield Laboratory
of Ophthalmology, Oxford, for writing Chapter XI, Messrs, L. Brown and
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I. ¥. Trotter, Miss E. M. Cant and Dr. J. Crank for reading and criticizing
the X-ray chapters, Drs. D. G. H. Ballard, B. R. Malcolm, C. Robinson, and
F. J. Weymouth for providing the assistance of their expert knowledge, and
Messrs. E. C. Collingwood and W. A. Porter for preparing the diagrams and
photographs. Many workers have given us permission to reproduce figures
from their publications; they are too numerous to mention individually here
but acknowledgment is made in each case in the text. Finally, our thanks are
due to the Officers of the Royal Society, the Faraday Society, the National
Academy of Sciences (Washington), and the Editors of Nature and of the
British. Journal of Applied Physics for permission to reproduce dlagrams and
photographs from original papers.

_ . C. H. BAMFORD
March; 1956 A.ELrLiOoTT

, W.E. HanBy
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CHAPTER I

The Role of Synthetic Polypeptides
as Protein Models

1. Introduction

The polymers which are the subject of this book are the synthetic linear
polypeptides derived from a-amino acids. The simplest polypeptides contain
only one type of a-amino acid residue, and their general formula is
shown in (I).

X(NH-CHR:CO),Y

@

The side-chain characteristic of the a-amino acid is denoted by R; X and Y
are end groups, the nature of which is determined by the method of pre-
paration, and # is the degree of polymerization. In a few cases the hydrogen
atoms attached to the nitrogen or a-carbon atoms are replaced by alkyl
groups. This is so for example in the polypeptides of sarcosine (II), proline
(IIT), and a-aminoisobutyric acid (IV).

X(NMeCH,CO),Y X(N—CHCO),Y X(NHCMe,CO),Y
(I1) CH, CH, (III) (Iv)
~
CH,

As far as is known, all the naturally occurring a-amino acids except sarcosine,
proline, and hydroxyproline possess an unsubstituted «-NH, group, and all
have a hydrogen atom attached to the a-carbon atom. The following
chapters will deal mainly with the polypeptides symbolized by (I).
Copolymers of two or more different a-amino acids may be prepared and
of course contain R groups of different kinds. A list of the commonest
a-amino acids is given in Table 1.1. As is the case with other classes of
polymers, copolymers may have either a random arrangement of residues or
an arrangement according to some definite pattern. The random copolymers
are the easiest to prepare and are made by polymerizing a mixture of the
different monomers. The different types of residue are introduced into the



2 SYNTHETIC POLYPEPTIDES AS PROTEIN MODELS
TABLE 1.1
CoMMmoON a-AMmINo Acips, NH,CHRCOOH
Residue weight
Trivial name R — NH.CHR.CO —
Alanine —CH, 71
o NH,

Arginine —CH,—CH,—CH,—N H—C<NH 156
Aspartic acid —~—CH,—COOH 115
Asparagine —CH,—CONH, 114
Glutamic acid —CH,—CH,—COOH 129
Glutamine ~—CH,—CH,—CONH, 128
Cysteine —CH,—SH 103
Glycine —H 57

—CH,—C—N

o [
Histidine CH CH 137
N
NH
: H.

Leucine ._CH2_CH<2H: 113

—CH—CH,—CH,
Isoleucine [ 113

CH,

Norleucine —CH,—CH,—CH,—CH;, 113
Lysine —CH,—CH,—CH,—CH,—NH, 128
Methionine ——CH,—CHg—SCHs 131
Ornithine —CH,—CH,—CH,—NH, 114
Citrulline —CH,—CH,—CH,—NH—CO—NH, 157
Phenylalanine _CH2_<t> 147
Serine —CH,—OH 87

—CH—OH
Threonine | 101

CH,




LI INTRODUCTION

TABLE 1.1 (Continued)

Trivial name R

Residue weight
— NH:CHR-CO —

—CH,;—C—72™

Il
Tryptophane CH

186
NS
NH
Tyrosine —CH,— <:>/OH 163
1
Todogorgoic acid —cH,—{ JoH 415
odogorgoic T\ /
1
I I
. T N\
Thyroxine —CHz—C/—O—<_ JOH 759
I 1
—CH—CH,
Valine | 99
CH,
Norvaline —CH,—CH,;—CH;, 99
Trivial name Formula Molecular weight

NH—CH,—COOH

Sarcosine* |
CH,
CH,—CH,
Proline*
CH, CH—COOH
N
NH
HO—CH—CH,
Hydroxyproline* |
CH, CH-COOH
~N
NH
S—CH,—CH—COOH
Cystine |

NH,
S—CH,—CH—COOH

l
NH,

89

115

131

240

* Strictly speaking these are imino acids.



4 SYNTHETIC POLYPEPTIDES AS PROTEIN MODELS I

polymer at rates determined by the reactivities of the corresponding
monomers. The structure of such polymers is not known precisely, since
there is a statistical distribution of residues along the polymer chains.

Copolymers of more precise structure may be termed block copolymers.
In the simplest block copolymer the molecules consist of segments, each of
which is composed of one kind of residue only. This type of polymer is
represented in (V):

XAA----AABB----BBCC----CC....Y
V)
in which AB C. ... are different a-amino acid residues. In a second type of

block copolymer each segment consists of a few different a-amino acid
residues arranged in a definite order, e.g., ABC. The copolymer has the
structure (VI).
X (ABC),Y
(VD)

Very little is known about the preparation and properties of block copolymers
of a-amino acids. The preparation of a high polymer containing a specified
order of a-amino acid residues not constructed on the block plan is possible
in principle but would be prohibitively laborious and has not been carried
out. The remarkable achievements of Work (see for example Harris and
Work, 1950), du Vigneaud (1953), and their collaborators in the synthesis of
polypeptides of known structure are noteworthy in this connection.

2. The Interest in Synthetic Polypeptides:
Folding of Polypeptide Chains

The Fischer-Hofmeister theory (Fischer 1902, Hofmeister 1902) that
polypeptide chains (often long chains) are a major constituent of proteins
is supported by a great weight of evidence, and is now generally accepted as
fact. This endows the synthetic polypeptides with a particular interest, since
they may be regarded as simple models of proteins. One of the main topics
of this book is the folding of polypeptide chains, consequently we shall be
mainly concerned with relatively high polymers containing several hundred
residues per molecule.

Astbury and his colleagues (1931, 1933, 1935) first demonstrated that in
some fibrous proteins the polypeptide chains are not in the simple extended
configuration but are folded in a regular manner. The idea of chain folding
has subsequently become a constantly recurring theme in protein chemistry
and physics. It is now recognized that the biological activity of a protein is
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intimately connected with the configuration of its constituent polypeptide
chains; moreover, in their native state most proteins (not only fibrous
proteins) contain folded chains. If the folding is destroyed the protein
usually becomes insoluble and inactive (i.e., denatured). It is hardly neces-
sary to emphasize here the great interest attached to the determination of
the chain configurations in proteins.

Some globular proteins (e.g., the hemoglobins, ribonuclease) can be
obtained in a highly crystalline state and have been studied intensively
by X-ray diffraction. Up to the present this work has not given definite
information about the chain configurations. Indeed, although the chemical
evidence for the existence of polypeptide chains in globular proteins is quite
compelling, the chains are by no means so prominent in the X-ray analysis
as might be expected. This situation apparently arises because the chains
are folded in a complex manner; it is likely that there is a primary fold, upon
which is superimposed some secondary folding. The fact that the molecules
can form crystals does not show that the folding is simple, but merely that
all the molecules have the same shape and contain chains folded in the same
way. The elucidation of the chain configuration would therefore seem to
require a complete structure determination. The magnitude of this task will
be appreciated when it is realized that the unit cells of these crystalline
proteins may contain several hundred atoms.

Obviously no simple polypeptide can be an adequate model of a protein
in all respects. The behaviour of a protein molecule is determined both by
the configuration of the backbone and by the character of the side chains.
We have chosen, as a first step, to study the behaviour of the polypeptide
backbone carrying non-polar side-chains, in an attempt to decide whether
chain folding is dependent upon some specific biological factor, or upon the
nature of the backbone, or upon the character of the side-chains, or upon a
combination of all three. We do not wish to suggest that the behaviour of a
protein molecule with its complicated pattern of electric charges can be
simulated by a simple polypeptide. It would be expected, however, that the
synthetic polypeptides would be able to provide information about the way
in which the polypeptide chain can fold. We must be careful not to assume
without good reason that any fold found in the synthetic materials is the same
as that in a protein. Nevertheless the synthetic polymers must almost
certainly assist eventually in the interpretation of data on proteins. It will be
seen from the following chapters that most synthetic polypeptides can be
obtained in o and B forms, containing respectively folded and extended
chains. All the folded polypeptides have essentially the same configuration,
and the principles underlying the folding are fairly well understood. The
determination of this configuration has been possible because the a polymers
have proved amenable to the standard techniques of polymer science and can
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be obtained as highly oriented fibers or films which are free from secon-
dary folds and are therefore very suitable for X-ray and infrared work.
In this respect the synthetic materials have an enormous advantage over
the proteins; generally the secondary folds in the latter cannot be un-
done without producing other structural changes such as disruption of the
primary fold.

It is important to realize the difference between chain folding of the type
we are considering, and the coiling of polymer chains which occurs generally
in solutions of high polymers. This latter, the result of Brownian motion,
is a purely random phenomenon. In general all the molecules will have
different shapes, which are continually changing with time. The folds in
the chains of synthetic polypeptides are perfectly regular and are held in
position by strong forces between groups uniformly disposed along the
chains. These forces are hydrogen bonds formed between suitably placed
peptide (-NHCO-) groups, and the regular folding results from the tendency
of the system to take up the configuration of minimum potential energy.
The primary folds in protein molecules may be of a similar kind, but the
secondary folds may involve other kinds of forces, e.g. salt links or true
chemical cross links such as disulfide bonds. If the polypeptide (or pro-
tein) is dissolved in a liquid which can form sufficiently strong hydrogen
bonds with either the >NH or >CO groups, the interpeptide hydrogen
bonds are broken and the regular (primary) folding of the chains is lost. In
solution in weakly interacting liquids, however, the characteristic a-fold is
retained (Bamford, Hanby and Happey, 1951 b; Robinson and Bott, 1951 ;
Doty et al., 1954). Some random coiling may of course also occur in these
solutions.

The synthetic polypeptides would also be expected to possess interesting
properties as high polymers in their own right, as it were, apart from the
specific interest due to their relationship to the proteins. Thus all naturally
occurring fibers — wool, hair, the silks, collagen —are polypeptides, and it
would be strange if some of the high-molecular-weight synthetic materials
were not good fiber formers. In this connection it will be recalled that the
nylons and perlons contain the peptide group; the polypeptides may in fact
be regarded as derivatives of “nylon 1.” The patent literature reveals that
several laboratories have prepared polypeptide fibers. The literature affords
comparatively little information on the properties of synthetic polypeptides,
and practically nothing has been published on mechanical properties.
However, some polypeptides are known to possess remarkable self-orienting
properties, an account of which is included in Chapter X. These properties
must be closely associated with mechanical behavior of the polymers, and it
may well appear that they are of importance for understanding other
materials besides polypeptides.



