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Preface

This book of problems is the result of a course in
differential geometry and topology, given at the mechanics-
and-mathematics department of Moscow State University.
It contains problems practically for all sections of the
seminar course. Although certain textbooks and books
of problems indicated in the bibliography list were used
in preparation of this volume, a considerable number of
the problems were prepared for this book expressly.

The material is distributed over the sections as in text-
book [3]. Some problems, however, touch upon topics
outside the lectures. In these cases, the corresponding sec-
tions are supplied with additional definitions and
explanations.

In conclusion, the authors express their sincere gratitude
to all those who helped to publish this work.






1
Application
of Linear Algebra to Geometry

1.1. Prove that a vector set a,, . . . , 2, in a Euclidean space is linearly
independent if and only if

det |(ai, aj)] # 0.

1.2. Find the relation between a complex matrix A and the real matrix
rA of the complex linear mapping.
1.3. Find the relations between

det A and det rA, Tr A and Tr rA4, det (A — AE) and det (r4 — AA).

1.4. Find the relation between the invariants of the matrices A, B and
A®B AR B.

Consider the cases of det and Tr.

1.5. Prove the formula

det ¢! = ™,
1.6. Prove that

e'ef = B 4 14, BIC”

for a convenient choice of the matrices C' and C”, where [A4,
Bl = AB — BA.

1.7. Prove that if A4 is a skewsymmetric matrix, then " is an orthogonal
matrix.

1.8. Prove that if 4 is a skewhermitian matrix, then € is a unitary
matrix.

1.9. Prove that if [4, A*] = 0, then the matrix A is similar to a diagonal
one.

1.10. Prove that a unitary matrix is similar to a diagonal one with
eigenvalues whose moduli equal unity.

1.11. Prove that a hermitian matrix is similar to a diagonal one with
real eigenvalues.

1.12. Prove that a skewhermitian matrix is similar to a diagonal one
with imaginary eigenvalues.



1.13. Let A = |a;] be a matrix of a quadratic form, and Dx
= det uai}'{;is),_zsk-

Prove that A4 is positive definite if and only if for all k&, 1| < k < n,
the inequalities Dy > O are valid.

1.14. With the notation of the previous problem, prove that a matrix
A is negative definite if and only if for all k, 1 < k < n, the inequality
(—D*Di > 0 holds.

1.15. Put |A4]? = Z laixi2. Prove the inequalities

i

4+ Bl < [A]l + |B},
VAL < N - 1At

I4B] < {4} - §B).

1.16. Prove that if A> = E,, then the matrix A is similar to the matrix

(v %)
Jk+ 1 =n
0 —E

1.17. Prove that if A% = - E, then the order of the matrix A
is (2n x 2n), and it is similar to a matrix of the form

(o E)
~E, 0/

1.18. Prove that if 4% = A, then the matrix A4 is similar to a matrix

E 0
of the form < .
0 0

1.19. Prove that varying continuously a quadratic form from the class
of non-singular quadratic forms does not alter the signature of the form.

1.20. Prove that varying continuously a quadratic form from the class
of quadratic forms with constant rank does not alter its signature.

1.21. Prove that any motion of the Euclidean plane R? can be resolved
into a composition of a translation, reflection in a straight line, and
rotation about a point.

1.22. Prove that any motion of the Euclidean space R® can be resolved
into a composition of a translation, reflection in a plane and rotation
about a straight line.

1.23. Generalize Problems 1.21 and 1.22 for the case of the Euclidean
space R".



2
Systems of Coordinates

A set of numbers ¢', ¢%, . . ., ¢" determining the position of a point
in the space R" is called its curvilinear coordinates. The relation between
the Cartesian coordinates xj, x2, ..., x. of this point and curvilinear
coordinates is expressed by the equalities

x = x(q', ¢ ..., @ m
or, in vector form, by

r=r4g, ¢ ..., 9

where r is a radius vector. Functions (1) are assumed to be continuous
in their domain and to have continuous partial derivatives up to the third
order inclusive. They must be uniquely solvable with respect to ¢,

g%, ..., g"; this condition is equivalent to the requirement that the
Jacobian
7= X 2
= |3

should not be equal to zero. The numeration of the coordinates is
assumed to be chosen so that the Jacobian is positive.

Transformation (1) determines »n families of the coordinate
hypersurfaces ¢" = go. The coordinate hypersurfaces of one and the same
family do not intersect each other if condition (2) is fulfilled.

Owing to condition (2), any n — | coordinate hyperplanes which
belong to different families meet in a certain curve. They are called coor-
dinate curves or coordinate lines.

ar . .
The vectors ry = -a_* are directed as the tangents to the coordinate
q

lines. They determine the infinitesimal vector

n

dr = Y rdg®

k=1

in a neighbourhood of the point M(g', ¢°, . . ., g"). The square of its
length, if expressed in terms of curvilinear coordinates, can be found from
the equality

n n

n
ds* = (dr, dr) = ( > rdg’, 2 rkdq") = D, gxdg'dq:,
s, k=1

s=1 k=1

where (,) is the scalar product defined in R".
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The quantities g« = g«s = (Is, &) define a metric in the adopted coor-
dinate system.

An orthogonal curvilinear coordinate system is one for which
0, s #k
gk = (Fsy Ti) = L s =k

The quantities H? are called the Lamé coefficients. Thev are equal to the

moduli of the vectors rg:
a . 2 3 2 2
Hy = |n = all BN i I xn )"
aq aq( aq‘

The square of the linear element in orthogonal curvilinear coordinates
is given by the expression

ds' = Hidg" + Hidg® + ... + Hidgn’.

X . .
2.1. Calculate the Jacobian J = —a—: of transition from Cartesian
q
coordinates (xi, ..., Xx,) to orthogonal curvilinear coordinates q',

2 o n
g, ..., q") in the space R".

2.2. Calculate the gradient grad f of the function f: R’ - Rinan or-
thogonal curvilinear coordinate system.

2.3. Calculate the divergence div a of a vector a € R® in an orthogonal
curvilinear coordinate system.

2.4. Find the expression for the Laplace operator Af of the function
/:R* = R in an orthogonal curvilinear coordinate system.

2.5. Cylindrical coordinates in R’
i=r @=¢ =z
are related to Cartesian coordinates by the formulae

X =r¢osy, y=rsing, 2z =2

(a) Find the coordinate surfaces of cylindrical coordinates.

(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator in cylindrical coordinates.
2.6. Spherical coordinates in R

1 2 3
g =r qg=0, g =¢

are related to rectangular coordinates by the formulae
X = rsinf cosg, y = rsinfsing, z = rcosf.

(a) Find the coordinate surfaces of spherical coordinates.
(b) Compute the Lamé coefficients.
(c) Find expression for the Laplace operator in spherical coordinates.
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2.7. Elliptic coordinates in R
2 3

g =\ ¢ =4pu ¢ =2z

are defined by the formulae

x = oy o= VI - Do - B, z = gz,

where ¢ is a scale factor.
(a) Find the coordinate surfaces of elliptic coordinates.
(b) Compute the Lamé coefficients.
2.8. Parabolic coordinates in R}
¢ =\ & =4 @ =2z

are related to Cartesian by the formulae
1
x = ?(#2 - M), v o= .z = oz

(a) Express parabolic coordinates in terms of cylindrical.

(b) Find the coordinate surfaces of parabolic coordinates.

(¢) Compute the Lamé coefficients.

2.9. Ellipsoidal coordinates in R* are introduced by the equations

(a>b>c)
e e 2
+ =10 > ~cb (ellipsoid),
@ + b o+ A 4+ P
YZ vZ zl

+
I

3 + 1{(-¢c? > p > —b? (hyperboloid of
a+p b +p "+
one sheet),

X2 yZ z2

. + = +
a + » b>+ v ¢+

1 (—-b% > v > —a?) (hyperboloid of

two sheets).
Only one set of values A, u, v corresponds to each point (x, y, z) € R>.
The parameters
¢ =N @ =4 ¢ =
are called ellipsoidal coordinates.
(a) Express Cartesian coordinates x, y, z in terms of ellipsoidal
coordinates A\, u, ».
(b) Compute the Lamé coefficients.
(c) Find expression for the Laplace operator in terms of ellipsoidal
coordinates.
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2.10. Degenerate ellipsoidal coordinates (a, B, ¢) in R} for a prolate
ellipsoid of revolution are defined by the formulae

x = csincose, y = csinhasinfsing, 2z = ¢ cosha cosg,
where ¢ is a scale factor, 0 € a < 0, 0 € <71, —~ 71 < ¢ £ 7.

(a) Find the coordinate surfaces in this coordinate system.

(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator.

2.11. Degenerate ellipsoidal coordinate system («, 3, ¢} in R? for an
oblate ellipsoid of revolution is defined by the formulae

X

It

¢ cosha sinff cosg, y = ¢ cosha sing sing,
Z = ¢ cosha cose,

0€a<ew, 0BT, -7<e¢esT

(a) Find the coordinate surfaces for this coordinate system.

(b) Compute the Lamé coefficients.

(¢) Find expression for the lLaplace operator.

2.12. Toroidal coordinate system {(«, 3, ¢) in R} is defined by the
formulae

¢ sinha cose ¢ sinha sing ¢ sinfB3
= V= =
cosha — cosg cosha — cosf cosha ~ cosf

where ¢ is a scale factor, 0 L a < o0, — v < <7, —~7< ¢ < 7.
(a) Find the coordinate surfaces in a toroidal coordinate system.
(b) Compute the Lamé coefficients.

(¢) Find expression for the Laplace operator.
2.13. Bipolar coordinates in R’
¢ =a ¢ =8 4=z
are related to Cartesian coordinates x, y, z by the formulae
a sinha a sing
X=———" V= ————"—"", I =3
cosha — cosf cosha - cosf

where a is a scale factor.
Compute the Lamé coefficients for a bipolar coordinate system.
2.14. Bispherical coordinates in R’

g =a g =8 ¢ =¢
are defined by the formulae
¢ sina cos¢ C sina sing ¢ sinhf3

= Vv = =

) )
coshf3 — cosa cosh@ — cosa coshg — cosa’

wherecisaconstantfactor,0 S a < B, ~0 < f < 0, ~1 < ¢ € 7.
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These formulae can be written shorter:

B =V

Z + ig = cicot

(a) Find the coordinate surfaces in a bispherical coordinate system.
(b) Compute the Lamé coefficients.

(c) Find expression for the Laplace operator.

2.15. Prolate spheroidal coordinates in R’

=N F=p =
are defined by the formulae
x=ow »=cVO - D - gd)cose,
Ve = (1 - psing,

2

where A 2 1, —-1 €< 1,0 < ¢ < 2%, and ¢ is a constant factor.
Compute the Lamé coefficients for this coordinate system.
2.16. Oblate spheroidal coordinates in R®

g =\ F=un ¢=9¢
are defined by the 'formulae
x=cusing, y=cJ\ - DI - 4B, z= chucose,
A2l -1<p<l, 0<¢<2m
Compute the Lamé coefficients for an oblate spheroidal coordinate
system.

2.17. Paraboloidal coordinates in R’

q' =\ Y= =

are defined by the relations
1
X = M\ COSp, y = Musing, z= 7()\2 - ).

(a) Compute the Lamé coefficients for a paraboloidal coordinate
system.
(b) Find the coordinate surfaces.

2.18. Let H,, Ha, H; be the Lamé coefficients for a certain curvilinear
coordinate system in R>.
Prove the relations
0 1 oH, ] 1 dH, 1 0H, oH,
O — = 5+ 7 Pyl lierdirur towsy
ag' H, aq ¢ H, oq H} a4 aq°
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8 1 0H; a 1 0H» 1 8Hz 0H,

Q)5 e g b ot —— -
dg° H> dg° dg Hi dg HY 3q' g’
@0 L8 1My 1 0H BH:
o8¢t Hy agt dq'" H, 4aq' H: 3q° d8¢°
@ FHL L OHyOHy 1 3H, 0y
3q dq Hiy 3¢* a4 H, 3¢ aq"’
)BH» _ 1 3 0Hy | 9H 0H
aq'dg Hi 3¢" 3q¢" H: aq° oq"’
© FHy 1 dH» 8Hy 1 BH, aH.

= +
3¢'9¢  H: ag' ag* H, aq' gt

2.19. Prove that if functions Hi(q'. ¢%, ¢%), Hxq', &, ¢°), H:q", ¢*,
q") of class C* satisfy the relations of the previous problem, then they
are the Lamé coefficients for a certain transformation

o= 5@ ¢, g s = 1,2, 3

3
Riemannian Metric

3.1. Prove that the metric ds? = dx? + f(x)dy?, 0 < f(x) <o can be
transformed to the form ds® = g(u, vXdu® + dv?) (isothermal coor-
dinates).

3.2. Prove that local isothermal coordinates can be defined on any real
analytic surface M. Find the conformal representation of the metric ds?.

3.3. Mercator’s projection is defined as follows: rectangular coordinates
(x, ») are defined on a map so that a constant bearing line (where the
compass needle remains undeflected) on the earth’s surface is put into
correspondence with a straight line on the map.

(a) Prove that 10 a point on the surface of the globe with spherical
coordinates (6, ¢) on the map, there corresponds, in Mercator’s
projection, the point with coordinates x = ¢, y = In cot8/2.

. .(R) How can the metric.gp the lerresmal globe be written in terms of
*.the, coprdinates™(y, y)‘{" \i ‘

3.4 Prave tpat the me!r(Q ds® qn the standard hyperbolmd of two sheets
which fs embeddel i the® pSeudo Euclidean space R? coincides with the
memc on the Lobache\ska plane



3.5. Write the metric on the sphere $° in complex form.

3.6. Find a metric on the two-dimensional space of velocities in
relativity theory.

3.7. Change the coordinates in the previous problem so that v — tanhy
(where v is the velocity of the moving point).

3.8. Write the metric of the previous problem in polar coordinates for
the unit circle.

3.9. Calculate the length of a circumference and the area of a circle
on (a) the Euclidean plane, (b) a sphere, (c) the Lobachevski plane.

3.10. Let the Lobachevski plane be realized as the upper half-plane of
the Euclidean plane. We call Euclidean semicircumferences with centres
on the axis Ox and Euclidean half-lines resting upon the axis Ox and
orthogonal to it “straight lines” of the Lobachevski plane. We call a figure
formed by three points and the segments of “the straight lines” joining
them a triangle in the Lobachevski plane.

Prove that the sum of the angles of a triangle in the Lobachevski plane

is less than .
3.11. (Continuation of Problem 3.10.) Let ABC be an arbitrary triangle

in the Lobachevski plane, a, b, ¢ the non-Euclidean lengths of the sides
BC, AC, AB, and «, 8, v the values of its angles at the vertices A, B
C. Prove the following relations:

cosa + cosf cosy.

(1) cosha = - -
sin@ siny
@) b cosB + cosy cosa
cos = ;
siny sina
(3) cosh cosy + cosa cosf3
¢ = .

sina sinf
3.12. (Continuation of Problem 3.11.) Prove the analogue of the law
of sines for the Lobachevski plane:

sinha sinhb  sinhc _ VO

. . - . . . b
sina sinf siny sina sinf siny

where Q = cos’a + cos’8 + cos’y + 2cosa cosf cosy — L.
3.13. (Continuation of Problem 3.12.) Prove the following formulae ex-

pressing the angles of a triangle in th L S kL (-l )

its sides:

coshb coshc — cosha |

(1) cosa = -
sinhb sinhc

15



2) cosp coshe cosha ~ coshb

il

»

sinh¢ sinha
cosha coshb — coshce
sinha sinhb

(3) cosy =

3.14. (Continuation of Problem 3.13))
Assume that y = x/2, ie, the triangle ABC is right. Prove the fol-
lowing relations:

(1) sinha = sinhc sina;
(2) tanha = tanhc cosB;
(3) tanha = sinhb tang;
(4) coshc = cosha coshb;
(5) coshc = cota cotg;
(6) cosha = cosa/sing.

3.15. Let ABC be a spherical triangle on a sphere of radius R, «, 3,
v the values of the angles at the vertices A, B, C and a, b, ¢ the lengths
of the sides BC, AC, AB. Prove the following relationship

a b c b . c
€Os — = €0s — cOS — + sin —sin — coS a.
R R R R R

4
Theory of Curves

4.1. Let C be a plane curve, My a point of the curve C, and XOY a
rectangular system of coordinates given in the plane of the curve. Denote
the points of intersection of the tangent and the normal to this curve
with the axis OX by T and N, respectively. Let P be the projection of
the point M, onto the axis OX.

(a) Find the equation of the curve C if its subnormal PN is constant
and equal to a.

(b) Find the equation of the curve C if its subtangent PT is constant

“and equal to a.

(c) Find the equation of the curve C if the length of its normal MoN
is constant and equal to z (for any point My on the curve).

4.2. Find the equation of the curve C whose tangent M7 is constant
in length and equal to a.
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