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Preface ‘

The creation of the text really began in 1976 with the author being involved
with a group of researchers at Stanford University and the Naval Ocean
Systems Center, San Diego. At that time, adaptive techniques were more
laboratory (and mental) curiosities than the accepted and pervasive categories
of signal processing that they have become. Over the last 10 years, adaptive
filters have become standard components in telephony, data communications,
and signal detection and tracking systems. Their use and consumer acceptance
will undoubtedly only increase in the future.

The mathematical principles underlying adaptive signal processing were
initially fascinating and were my first experience in seeing applied mathematics
work for a paycheck. Since that time, the application of even more advanced
mathematical techniques have kept the area of adaptive signal processing as
exciting as those initial days. The text seeks to be a bridge between the open
literature in the professional journals, which is usually quite concentrated,
concise, and advanced, and the graduate classroom and résearch environment
where underlying principles are often more important.

In that spirit, this text will be most beneficially used as an introductory
tool for anyone interested in learning the fascinating field of adaptive signal
processing. Most of the intended audience will be seniors and graduate stu-
dents in electrical engineering or computer science, although the practicing
engineer “gearing up” to work on product development using adaptive tech-
niques will also find the text useful. An understanding of linear systems, digital
signal processing, and matrix algebra approximately equivalent to that of an
undergraduate electrical engineering curriculum is adequate. The text has
been used for a graduate course in adaptive signal processing at North
Carolina State University, in which students from a wide variety of back-
grounds have actively participated.
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The mam distinction between this text and others that have appearad on
the subject is the inclusion in this text of the timely subject of vector space
approaches to fast adaptive fitering. This is currently one of the most active
are‘as. of research in signai precessing, but the mathematical sophistication
required to understand the open literature in the area has been formidable.
This text develops the vector space approach through the libera! nss of geo-
metrical analogies, which encompasses Chapters 9- 1 1. In so doing, the v2cior
space approach becomes actually very easy to understand and POSSESSeE &
great dezl of simple elegance. After completing these chapters, ihe zeadec
will be well prepared to tackle some of the more specific research probiems
associated with fast adaptive techniques. The book can be an effeciive 1ox1 for
a one-semester course in adaptive signal processing or as a reference {oi the
researcher {academic or industrial) to absorb material at his own pace. Problems
that have survived the classroom experience are included at the end of ihe
chapters.

This text is approximately the same process by which I became familiar
with the different areas of adaptive signal processing. Much of the original
material was litgrally “back of the envelope” information from hearing con-
ference talks and informal discussions. Other portions had their beginning as
notes scribbled in the margin of books or papers when something firaily ielled.

As with any book, the contributions of many peoplc over many years were
instrumental to the entire process. Spacifically, 1 would like to thank the
following: Bob Plemmons of North Carolina State for sharing his mastery of
linear algebra; Lloyd Griffiths of USC for long runs during which philosophies
were discussed; Ed Satorius of JPL and Joel Trussell of North Carolina State
for consistently providing honest and, therefore, valuable technical evaluation
and discussion on both this text and the Big Picture; John Cioffi of Stanford
for his contributions to my own understanding of geometrical approaches and
fast adaptive techniques; Nino Masnari, Chairman of the Electrical and
Computer Engineering Department at North Carolina State, for helping to
foster the professional environment that allowed the time and resources to
develop this text; and the editorial staff at Springer-Verlag for providing the
assistance and encouragement I needed to successfully complete the manu-
script. Additionally, for their unsung efforts in reading and debugging the
original drafts and homework problems, I would like to thank the foliowing
at North Carolina State: Gary Ybarra, Glenda Poston, Zong Rhee, Dachoon
Kim, and Randy Avent. Special thanks are also extended to Peggy Bail, Liz
Story, George Winston, and Red Rydcr.

Finaily, the city of Boston and the season of Winter had a lot to do with
the whole process.

Raleigh, NC S.T. ALEXANDER
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CHAPTER 1
Introduction

1.1 Signal Processing in Unknown Environments

Many everyday problems encountered in communications and signal process-
ing involve removing noise and distortion due to physical processes that are
_ time varying or unknown or possibly both. These types of processes represent
some of the most difficult problems in transmitting and receiving information.
The area of adaptive signal processing techniques provides one approach for
removing distortion in communications, as well as extracting information
about unknown physical processes. A short consideration of some of these
problems shows that distortion is often present regardless of whether the com-
munication is conversation between people or data between physical devices.

For example, a common problem in long distance telephone communica-
tions is the creation of echoes due to impedance mismatches on the network.
This has an extremely annoying effect on the persons using the telephone link,
and can degrade the quality of communication such that the conversation is-
rendered unsatisfactory.

Another example is that of computers exchanging data over physical
communications channels. Many channels are well conditioned and deliver
the original transmitted pulses undistorted to the receiver. However, many
channels are pooriy conditioned and distort the received digital pulses to such
a degree that data decision devices would make far too many errors to provide
a useful service.

While there are numerous other examples, these two are sufficient to
illustrate some of the main reasons for needing adaptive signal processors. In
the first example above, the impedance mismatch is usually unknown. That
is, the sheer number of local telephone lines that must be accessed effectively



1 Introduction

prohibits the impedance for any one local line to be accurately matched to
the long distance link. Even if the resources were available to match the
impedance of each local line to the long distance link, there is still the probiem
that due to aging, inaccurate component values, moisture, etc., the impedance
of each local line may be time varying. Therefore, attempts to build a single
processor that has the flexibility of addressing all these time-varying and
ubknown phenomena require adaptivity in the processor. Such adaptive
signal processing devices are widely in use now and are known as adaptive
_echo cancellers.

In the second example above concerning data transmission, the unknown
and/or time-varying segments is the communications channel itself. For
example, with the proliferation of mobile radios, there has emerged the pos- -
sibility of transmitting and receiving data from highly mobile stations to a
central computer database. Consider the case in which the transmitter is
mobile (i.e., located in a car). Since the data is encoded and sent over the
atmospheric radio channel, the propagation path between the transmitter and
fixed receiver is changing, sometimes quite rapidly. Therefore, such considera-
tions as data symbol timing, power of received signal, and propagation loss,
for example, are time varying and unknown to the system. Once again,
designing a fixed parameter system to handle the wide range of possible values
of these parameters could render the system performance unacceptable for
certain specifically encountered situations. .

The common element in each of the preceding problems, and indeed in
most of the applications of adaptive signal processing, is that some element
of the problem is unknown and must therefore be learned, or some component
of the system is changing in an unknown manner and therefore must be
tracked. Quite frequently, both of these problems are resident in the applica-
tions of adaptive signal processing.

1.2 Two Lxamples

Two general examples were discussed in the previous section. This section will
discuss two additional examples in more detail and provide a mathematical
framework for adaptive signal processing. These two applications examples
will be used throughout the text to illustrate new concepts and to investigate
the performance characteristics of various adaptive methods. The first exam-
ple is known as systems identification and the second will be referred to as
linear prediction. ‘

Systems identification

The first example concerns systems identification, which is used quite fre-
quently in controls and communications work. Consider the case of F igure
1.1, in which it is desired to learn the structure of an unknown system from a
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x(n)
System input
Y Y .
TRANSVERSAL ‘UNKNOWN
FILTER, SYSTEM,
Wk hk
d(n) B System output
e{n) d
- P @)
\_/ +

Figure 1.1 Identification of unknown system, h,, using transversal filter, w,.

knowledge of its input x(n) and output d(n). For example, it may be necessary
to determine if any of the system parameters are approaching critical values.
Although there are several way of quantifying the “knowledge of a system,”
the system impulse response, h,, is often used. From elementary linear systems,

d(n) = ;::o hex(n — k), . (1.2.1)

where both the input signal and the impulse response have been assumed to
be casual. In this problem, the true impulse response h; is unknown and must
be obtained.

The form of (1.2.1) suggests the following approach to “learning” the h,.
Assume the h, form a finite impulse response of no more than N samples in
duration, counting h,. Then,

d) =3 hyx(n — ). \ (1.22)
k=0

This is the true system output d(n). Using the form suggested by (1.2.2), a
prediction of d(n), denoted as a(n), may be made using a set of filter coeflicients
Wy :

N-1
din) = Y wex(n — k). (1.2.3)
k=0

Strictly speaking, (1.2.3) is an estimation of the signal d(n). However, much of.
the current literature refers to a form such as (1.2.3) as a prediction of d(n),
and this terminology will be used in this book.

If each chosen w, is “close” to each true h,, then the prediction error,

e(n) = d(n) — d(n) (12.4)

should be small in magnitude. In systems identification, the rationale is that
if d(n) ~ d(n), then w, = h,. Therefore, minimizing some measure of e(n) should
force the individual w, to approach the individual h;, thus identifying the



1 Introduction

x(n)

Figure 1.2 Information signal x(n) produced by Nth order autoregressive (AR)
process.

system. In Chapter 2, the mean square error will be seen to be a natural
measure that is amenable to mathematical analysis, as well.

Linear prediction

The second example is very common in speech analysis and telecommunica-
tions. Consider Figure 1.2, which shows a model of a process that generates
an information signal. The output of the model is the current sample x(n), and
it is easy to see that x(n} is given by

x(n) = i ax(n — k) + v(n), (1.2.5)
k=1

where the a, are the unknown system parameters and v(n) is an unknown
random excitation sequence. In statistical literature, (1.2.5) is called an Nth
order autoregressive (AR) process. The model structure in (1.2.5) is analogous
to a signal produced through a series of reflecting/transmitting media. This is
a very good model for speech produced in the vocal tract, seismic signals
-propagating through a layered earth, and certain types of electromagnetic
reflections in radar applications.

The form of the model in (1.2.5) is an approach similar to the preceding
exampie for “learning” the generating parameters of the unknown system.
That is, form a linear prediction of x(n) based upon the N most recént x(n — 1),
s, x(n— N

(n) = i wex(n -~ %), {1.2.6)
k=1
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Since the excitation sequence v(n) is unknown, it clearly cannot be used in the
prediction {1.2.6). The prediction error then becomes

e(n) = x(n} — *{n). (127
In this text, predicting a signal sample based upon previous values of the same
signai will be called the purely linear prediction problem or, more simply, the
linear prediction problem. Since the excitation sequence v{n) is unknown, it
clearly cannot be used in the prediction (1.2.6).

Once more, the rationale is that if the mean square of e(n) is small, then the
w, of the filter will be forced to the g, of the signal model. Sometimes in speech
communications problems, the object is to identify and transmit the a;. Other
telecommunications applications might transmit information about e(n).
These applications will be discussed in more detail as they naturally arise
during the course of the text. ’

In cither of the preceding examples, the filter coefficients w, may be constant
if the unknown process is at least statistically stationary. This will be referred
to as the fixed filter case. However, if the system to be identified in (1.2.1) or
the information process in (1.2.5) has parameters that change in an unknown
manner, then adaptivity of the filter coefficients is necessary. These two
examples of systems identification and linear prediction will be referred to
frequently throughout the text in more detail. For additional applications of
adaptive filtering, as well as other approaches to the subject of adaptive signal
processing, the reader is directed to references [1] through [9].

1.3 Outline of the Text

One purpose of this text is to develop in a cohesive, structured approach some
of the more useful and promising adaptive signal processing techniques. This
approach will be designed to accurately display the common foundations of
these methods, but it will also illuminate the differences between the candidate
adaptive approaches. This should allow the systems designer the tools for
selecting the appropriate approach to the problem at hand, given the engineer-
ing constraints of memory, speed, and cest.

Another purnose is to provide the reader with a well-founded physical and
geometrical understanding of the adaptive signal processing methods. It is
sometimes tempting to launch immediately into mathematical derivations
without providing the often necessary physical understanding of the adaptive
processes. However, this text strives to demonstrate physical or geometrical
interpretation whenever possible, thus providing another tool for understand-
ing adaptive methods. To this end, a general outline of the text is as follows.

Since the concept of minimum mean square error (MSE) is prerequisite
to understanding much of modern adaptive signal processing, Chapter 2
develops a foundation for determining minimum MSE filters. Necessary
probabilistic and statistical concepts are also introduced as they are needed
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in this chapter. In addition, the very important normal equations are derived
in Chapter 2. The concept of a “bowl-shaped” error surface is developed, as
well as the geometrical analogy of locating the minimum of this surface.

Having thus formulated the minimum MSE problem, Chapter 3 then
explores one very important method of solving the normal equations that
result in the very important application of linear prediction filtering. This leads
to the Durbin recursion, which in turn leads to the lattice filter structure. This
lattice structure will be seen to be very useful in many approaches to linear
prediction and adaptive signal processing and provides an alternative to the
transversal filter implementation. N

Another important iterative approach for solving the normal equations is
developed in Chapter 4. This is the gradient-based technique known as the
method of steepest descent. A derivation of the convergence properties of this
method is presented, as well as the valuable geometrical analogy of “finding
the bottom of the bowl.” ‘ :

Chapter 5 then makes the transition to the least mean squares (LMS)
algorithm, which computes an approximation to the method of steepest
descent. The analytical convergence properties of the LMS algorithm are
developed in detail in this chapter. Additionally, the differences between
LMS and steepest descent are discussed in detail, as well as considerations for
using the LMS algorithm in actual systems.

Two application examples, known as systems ‘identification and linear
prediction, are developed in Chapters 2—5. Chapter 6 then provides some
additional applications of adaptive filtering, which give more insight into
actual systems usage. The applications of Chapter 6 are all done using the
popular LMS algorithm. ‘

Chapter 7 then discusses some adaptive approaches based upon Durbin’s
algorithm that converge more rapidly than LMS for most applications.
Known collectively as gradient-based lattice techniques, these approaches
create sets of orthogonal signals from the acquired data signal, which are then
used in efficient updating algorithms. o

The modern area of recursive least squares (RLS) adaptive filters is next
introduced in Chapter 8. The specific method of Chapter 8 is the regular RLS
method, which lays the foundation for understanding the extremely rapidly
converging techniques of modern least squares filtering. The RLS method
investigated is different from the gradient-based méthods examined thus far,
in that it computes the optimal least squares prediction at every point in time.
Gradient-based methods, such as LMS, are only optimal at convergence. This
added performance capability is not without cost, however, since the regular
RLS requires substantially more computation than LMS. -

However, there are newly derived methods of reducing the required com-
putations in RLS filters, which are collectively known as fast RLS techniques.
Chapter 9 recasts the RLS problem by structuring it as a minimization
problem in a Hilbert space, which has some very beneficial géometrical
interpretations. This leads to the very powerful vector space approach to fast



1.3 Outline of the Text 7

adaptive filters, which can be applied to either the fast lattice or fast transversal
implementations.

Chapter 10 then applies these vector space concepts to the derivation of the
fast least squares lattice (LSL) filter for linear prediction. The geometrical
interpretations of the LSL are emphasized in this chapter.

Chapter 11 then applies the geometrical concepts of Chapter 9 and derives
the least squares fast transversal filter (FTF), which is the transversal counter-
part of the LSL implementation in Chapter 10. The FTF has the fewest
arithmetic operations per time update of any least squares method derived to
date. In Chapters 10 and 11, it will be seen that the LSL and FTF approaches
usually converge much more rapidly than the gradient-based adaptive filters.
Since their computational complexity is comparable to LMS, they are indeed
worthy of consideration for many modern applications.
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CHAPTER 2

The Mean Square Eiror (MSE)
Performance Criteria

2.1 Introduction

Adaptive signal processing algorithms generaily attempt to optimize a per-
{ormance measure that is a function of the unknown parameters to be iden-
tified. The most per. sive of these performance measures are based upon
squared prediction errors, although the specific prediction error used in
adaptation often depends upon the particular algorithm. Two broad categories
of adaptive signal processing methods are: (1) stochastic and (2) exact. The
watter category refers to adaptive filters based upon the actual or exact data
signals acquired. The recursive least squares techniques comprising Chapters
2 -11 are examples of these exact techniques, cmd investigation of those
rechniques will be deferred until the later chapters.

The former coregory of adaptive techniques known collectively as stochas-
tic mohods are based upon dertvations using the statistical properties of the
data signals. The -'“Hmrv ciau:,t" al meastrs used is the enseinble average, or
mean, of 2 squired ¢ netion, and this has evolved into wide-
spread use of the nman :,:,uarcd predictwn £r7or as a ﬂermrma‘nce measure.
ftzn this is shortenad 1o simply the wean square error {VESE)

®any of the properiies of minivivm MSE filters and *w MSE surface are
derived using basic hincar aigebra techy uq , ",uwh EX walue and sigen-
vector analysis. Excoilent teits on iineas at tse iniroductory level are
hose by A"u'm [1] qrd Stra'lg {21 ho..“ > 4t is particularly strong in
i it the somewhat more advanced
‘ '-l i the text by I\‘:mle and ’)amcl {1__1, ‘vh;:r is written largely from an
cnginecring and physical science stai:dpoini. As a resuit, the development of
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fo

Meeas Square Error (MSE) and MCEE Surface g

eigenvalues and eigenvectors ic suparb and gives excelient physical analogic
A more expanded treatment of phiysica! considerations is given in an casiic!
ediiion by Noble [57. The book by Bellmian [6] is @ scmewhat more maibe-
matically oriented text, but is siill very good for the engingering studont and
contains a number of worked cxamples. For the active
squars prediction, filtering, and estimation, the texi by Ta
[77 ofters insight into both the theoretical and computat!
irix and eigensystem analysis. Additienaliy, Ceiub and
excellent text for advanced ma'zix anaiysis and comput
finear prediction techniques using the MSE crit
extensively in the speech reseaich community. Many o
tions, ns well as caily general theoretical work, are contaiie
Markei and Gray [8]. An excellent journa; articie that cisplays the fexibilily
lineur prediction to diverse applications is that by Makboul {91 Since the
aiocorrelation function plays such ag important role in linear prediction-and
MsL enalysis, the paper by Marke! Gray [107 analyzos in deiell i
impaci. The text by Rabine and Schafer {117 develops approxinations Lo i

searcher 12 mear
cev and Fadeeve
cots of ma-

|
2418

auiscorrelation function and appiies thetn 1o the problem of Hincar predictior
of specch. Finally, the excelient text by Javant and N
use of 1andom process theory i many techniques choss
speesh and image coding,

imization of the MSTE is the objective of many currently used adaptive
methods, such as the lcast mean square {L.M8S) algorithm and the gradient
lattice rmethod, These techniques are the topics of Chapters 4-7. in the curren:
chapter, the basics of minimizing the MSE using the technigues ol lincar
predicricn filtering are introduced. Sectior. 2.2 develops the concept of a
quadratic error surface, which has the sirapie geometrical properiy of a single,
or global, minitnum. Section: 2.3 then discasses some additional properties of
the crror surface, whichk will be useful and important for relating tho error
surface to physicai phenomena. Section 2.4 then derives the relation known
as the normal equations, which defines the location of this global minimum.
Section 2.5 ther: concludes with a discussion of some of the geometrica:
proncriies of the error surface, which aide in undersianding the dynamic
properties of the adaptive methods.

27 illustrates the
rom the areas ol

2%

2.2 Mean Square Error (MSEj and MSE Surface

A rationale for the MSE as a performance measure 18 perhaps best illustraied
by example. In the general case, it is sometimes desired to nredict the currens
sample ol one signal, d{z), using samples of 2 second signal, x(n). An example
of iitis case was the systems identification eppiication of ¥igere LI In thic
text, d{n) will be called the desired signal and x {7} will be called the cata signal.
since it is desired to predict dia} using x(#) Ideally, the prediction filter output




