STRUCTURED PL/1 (PL/C)
PROGRAMMING

JEAN-PAUL TREMBLAY
RICHARD B. BUNT
JUDITH A. RICHARDSON

STRUCTURED PL/I (PL/C)
PROGRAMMING

Jean-Paul Tremblay
Richard B. Bunt
Judith A. Richardson

Department of Computational Science
University of Saskatchewan, Saskatoon
Canada

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotda Diisseldorf
Johannesburg London Madrid Mexico Montreal
New Delhi Panama Paris S&ao Paulo Singapore Sydney Tokyo Toronto

STRUCTURED PL/I (PL/C) PROGRAMMING

Copyright © 1980 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher.

34567890 EBEB 8 32

This book was set in Souvenir by the authors.

The editors were Charles E. Stewart and Annette Hall;
the designer was Robin Hessel

the production supervisor was Dominick Petrellese
Edwards Brothers Incorporated was printer and binder.

Library of Congress Cataloging in Publication Data

Tremblay, Jean-Paul, date
Structured PL/I (PL/C) programming.

Bibliography: p.

Includes index.

1. PL/I(Computer program language) 2. PL/C
(Computer program language) 1. Bunt, Richard B.,
date jointauthor. II. Richardson, Judith A.,
jointauthor. III. Title.

QA76.73.P25T73 001.6’'424 79-17904
ISBN 0-07-065173-6

PREFACE

The first course in a computer science curriculum is certainly one of the most
important. For most students this constitutes their initial exposure to fundamental
notions such as the algorithm, and to the description of solutions in a manner
sufficiently precise for computer interpretation. It is important that these notions
be properly taught for, as the ancient Roman poet Horace observed, “A new cask
will long preserve the tincture of the liquor with which it was first impregnated.”

To this end we have prepared a package of instructional materials which
reflects our own view of how the first course should be organized and taught. The
cornerstone of this package is a book entitled “An Introduction to Computer
Science: An Algorithmic Approach” (Tremblay/Bunt, 1979). This book presents
computer science concepts in an algorithmic framework, with a strong emphasis
on problem solving and solution development. We feel this to be particularly
important for the first course.

Clearly the use of a programming language is an important part of the first
course too. For that reason we have prepared a series of supplementary integrated
programming guides (of which this is one) to provide the needed support. The
supplementary guides are not intended to re-teach the ideas of the main book, but
rather to supplement them with the programming concepts required to implement
them in a particular programming language (here, PL/I), and thereby provide the
student with the practical programming framework that we feel to be important.

Any book on the PL/I language must set careful terms of reference. The
“language” for any programmer is, in fact, defined by the compiler that he or sheis
using. One of the original PL/I compilers was IBM’s F-level PL/I compiler, now
superseded by the newer Checkout and Optimizing compilers. Several other
computer manufacturers offer PL/I-like languages in their software support:
Honeywell, for example, has a language called EPL for its MULTICS operating
system, and Digital Equipment Corporation offers a language called CPL with its
DECSYSTEM 10 and 20 operating systems. A number of student-oriented
compilers have emerged from universities: prominent among these are the
University of Toronto’s SP/k, Brooklyn Polytechnic Institute’s PLAGO, the
University of Maryland’s PLUM, and Cornell University’s PL/C. Our discussion in
this book centers primarily on the PL/I programming language as it is implemented
in the PL/C compiler. On occasion, however, we venture into full PL/I as
supported by IBM, when language features that we require are not supported by
PL/C.

xi

xii

PREFACE

It has been our experience that students learn by “viewing.” This is particularly
true in the case of programming where it seems that there are immense barriers of
bewilderment for many students at the outset. To try to flatten these barriers we
present worked-out sample programs, in many cases complete with actual run
output. These have been programmed using the compilers available to us at the
University of Saskatchewan; namely, release 7.6 of the PL/C compiler and version
5.4 of the IBM F-level PL/I compiler. In addition to examples presented for the sake
of illustration, most chapters end with a number of more detailed applications that
attempt to draw together the material presented in the chapter. These are the same
applications that are discussed in the main book; their choice reflects our emphasis
on the nonnumeric aspects of computing. As in the main body, this same bias is
carried over into the exercises as well. Exercises are found at the end of most
sections and at the end of most chapters.

Much has been said and written in the past few years about the merits of an
approach to programming loosely termed “structured programming.” Studies of
the programming task itself have shown that adherence to certain basic principles
can result in the production of better quality programs. Our approach is based on
many of these principles, and our presentation and examples are designed
accordingly. Chapter 7, on programming style, examines the process of
programming itself in more depth.

Finally, since we view this guide both as an instructional vehicle and a
reference document, we have included as an appendix a lengthy reference
summary of the PL/I language (and, in particular, the PL/C language).

SUMMARY BY CHAPTERS

The book begins with a brief introduction to programming from a PL/I
perspective.

Chapter 2 provides an introduction to basic concepts of computing and
programming as well as the first examples of complete PL/I programs. Some simple
applications are described.

The notion of “flow of control” is introduced in Chapter 3, along with two
fundamental PL/I control structures: the IF and the DO. Solutions to several fairly
elaborate applications are developed.

The concept of the array is the topic of Chapter 4. Processing of single-
dimensional arrays, or vectors, is discussed first. The chapter then moves to a
consideration of arrays of higher dimension. Some typical applications of vectors
and arrays are discussed. Among these are the important applications of searching
and sorting.

String processing is the topic of Chapter 5. The representation of strings in a
computer and basic PL/I operations on strings are described. A number of simple
applications involving string processing are developed. More advanced topics are
deferred to Chapter 9. Chapter 5 also deals for the first time with the concepts of
formatted I/0 — in particular the GET EDIT and PUT EDIT statements of PL/I.

Chapter 6 deals with functions and procedures. Topics discussed include the
correspondence of arguments and parameters, the way in which functions and
procedures are invoked and values are returned in PL/1, and the general question
of scope in programs. Three applications involving the use of functions and
procedures are considered.

Programming style is the topic of Chapter 7. This we feel to be an important
chapter of the main book. In this book we try to consider the effects of style on the

PREFACE

production of PL/I programs. Examples of actual programs are included to
illustrate the points made.

Chapter 8 deals with the subject of numerical computation. PL/I programs are
given for the solution of problems discussed in the main book. These include root
finding, numerical integration, the solution of simultaneous linear equations, and
curve fitting. For some of the material in this chapter, familiarity with elementary
calculus would be an asset.

Chapter 9 returns to the topic of string processing, with the presentation
dealing with more advanced applications such as KWIC indexing and text editing.

Chapter 10 offers an introduction to the support of linear data structures in
PL/1. Simple structures such a linear lists, stacks, and queues are discussed, as are
PL/I capabilities to manage these structures. Important PL/I features such as
pointer variables, controlled and based storage, structures, and recursion are
presented for the first time. A number of important applications are described.
These include the compilation of expressions, the symbolic manipulation of
polynomials, and simulation. Also discussed in this chapter are hash-table
techniques.

Chapter 11 considers the PL/I support for the most important non-linear data
structure — the tree. Topics include the representation of trees in PL/I and the
application of trees to problems such as the symbolic manipulation of expressions,
searching, and sorting.

As already mentioned, the book concludes with an appendix containing a
detailed reference summary of the PL/I language.

HOW TO USE THIS BOOK

This book is intended for use in conjunction with the book by Tremblay and
Bunt entitled “An Introduction to Computer Science: An Algorithmic Approach”
(Tremblay/Bunt, 1979). The material covered by these two books encompasses
courses CS1 and CS2 in the revised curriculum proposals of the Association for
Computing Machinery (Austing et al., 1979).

As was done in the main book, we make assumptions as to the nature of
available computing facilities. For convenience of presentation we assume a card
reader/line printer environment throughout. Since we recognize that this may not
be the case for many students, the dependency on such matters is minor. Should
an alternative environment exist, a simple comment from the instructor should
suffice to overcome any possible problems of comprehension.

ACKNOWLEDGMENTS

A project of this scale cannot be completed without the able assistance of
many people. We are, of course, indebted to all those who assisted us both directly
and indirectly. Marilyn Archibald was an active participant in the early stages of the
project, and contributed significantly to the first four chapters. Grant Cheston
devoted a great deal of time to the reading of our notes and contributed many
valuable suggestions. Our proof readers, including Lyle Opseth, Murray Mazer,
Cheryl Emewein, and Dave Hrenewich, showed patience and diligence. Lyle
Opseth also programmed many of the examples in the book. Murray Mazer and
Guy Friswell assisted in the programming of some examples. We are grateful for
the support and comments of our colleagues and students in the Department of

xiii

xiv

PREFACE

Computational Science at the University of Saskatchewan, who have class-tested
preliminary versions of our books over the past three years. We appreciate the
efforts of the Department of Printing Services at the University of Saskatchewan,
and in particular Mr. Bill Snell who provided us with an automatic typesetting
capability that made it possible to meet a difficult schedule. Finally, one of the
authors (Bunt) owes a large debt of thanks to the Research Division of the IBM
Corporation at Yorktown Heights, New York, for a very enjoyable and productive
sabbatical leave during which this project was completed.

Jean-Paul Tremblay
Richard B. Bunt
Judith A. Richardson
REFERENCES
AUSTING, R. H., BARNES, B. H., BONNETTE, D. T., ENGEL, G. L., and
STOKES D. G.: “CURRICULUM °’78: Recommendation for the Undergraduate
Program in Computer Science,” Communications of the ACM, Vol. 22, No. 3,
March 1979, pp. 147-166.

TREMBLAY, J. P. and BUNT, R. B.: An Introduction to Computer Science: An
Algorithmic Approach, McGraw-Hill Book Co., New York, 1979.

CONTENTS

PREFACE xi

CHAPTER 1 INTRODUCTION TO PL/I PROGRAMMING 1

1-1 Introduction 2
1-2 A Short History of the PL/I Language 2
1-3 The Use of a Programming Language 3
1-4 The Approach of the Book 3
Bibliography 4
CHAPTER 2 FUNDAMENTAL PL/I CONCEPTS 5
2-1 Data, Data Types, and Primitive Operations 6
2-1.1 Data Types 6

2-1.2 Data Manipulation 8
Exercises for Sec. 2-1 10
2-2 Variables and Expressions 10
2-2.1 Variables and their Declaration 10

2-2.2 Evaluation of Expressions 12

2-2.3 The Assignment Statement 16
Exercises for Sec. 2-2 18
2-3 Simple Input and Output 18
Exercises for Sec. 2-3 29
2-4 Preparing a PL/C Program 29
Exercises for Sec. 2-4 33
2-5 Processing Simple PL/I Programs 34
Debugging 37
Exercises for Sec. 2-5 44
2-6 Applications 44
2-6.1 Reporting Student Grades 44

2-6.2 Gauging Inflation 46
2-6.3 Pari-Mutuel Payoffs 46

Exercises for Chapter 2 49

CONTENTS

CHAPTER 3 DECISION STRUCTURES

3-1 Introduction
3-2 The Selection from Alternative Actions
3-2.1 The IF..THEN.. ELSE Statement
3-2.2 Nested IF Statements
Exercises for Sec. 3-2
3-3 Looping
3-3.1 Conditional Loops
3-3.2 Counted Loops
3-3.3 Loop-Controlled Input
3-3.4 Nested Loops
Exercises for Sec. 3-3
3-4 Use of Compound Conditions
Exercises for Sec. 3-4
3-5 Applications
3-5.1 Book Store Orders
3-56.2 Mortgage Payments
3-5.3 Cheque Reconciliation
Exercises for Chapter 3

CHAPTER 4 VECTORS AND ARRAYS

4-1 Vectors and Operations on Vectors

Exercises for Sec. 4-1

4-2 Sorting and Searching with Vectors
4-2.1 Selection Sort
4-2.2 Basic Searching
4-2.3 Merging and Merge Sorting

Exercises for Sec. 4-2

4-3 Arrays

Exercises for Sec. 4-3

4-4 Applications of Vectors and Arrays
4-4.1 Family Allowance Payments
4-42 Overweights Anonymous
4-43 The Global Hockey League
444 Computer Dating Service

Exercises for Chapter 4

CHAPTER 5 STRINGS AND THINGS

5-1 String Concepts and Terminology
5-2 Basic String Operations
Exercises for Sec. 5-2
5-3 Edited Input and Output
Exercises for Sec. 5-3
5-4 Basic String Applications
5-4.1 Analysis of Textual Material
5-4.2 Justification of Text

52

53
53
53
56
58
59

61
66
69
70
74
77
78
78
81

87

91

92
95

101
109
112
116
121
123
124
125
127
130
135

141

142
144
148
149
157
158
159
162

CONTENTS

5-4.3 Form Letter Generation 163
Exercises for Chapter 5 171

CHAPTER 6 SUBPROGRAMS: FUNCTIONS AND PROCEDURES 173

6-1 Functions in PL/I 174
Exercises for Sec. 6-1 179
6-2 Procedures in PL/I 180
Exercises for Sec. 6-2 184
6-3 Argument-Parameter Correspondence 185
Exercises for Sec. 6-3 188
6-4 Internal and External Blocks in PL/I 189
Exercises for Sec. 6-4 196
6-5 Applications 199
6-5.1 Processing Symbol Tables 199
6-5.2 The Transposition of Musical Scores 203
6-5.3 Finding Paths in a Graph 206
Exercises for Chapter 6 208
CHAPTER 7 PROGRAMMING STYLE IN PL/I PROGRAMS 210
7-1 Introduction 211
7-2 Control Structures and Structured Programming 211
7-3 The Use of Variables 215
7-4 Program Presentation 218
7-5 Reflections 222
Bibliography 226
CHAPTER 8 NUMERICAL COMPUTATIONS 228
8-1 Errors 229
8-1.1 The Specification of Precision in PL/I 229

8-1.2 The Precision of Numeric Constants
and Intermediate Results 231

8-13 The Handling of Interruptions

in Numeric Computations 233
Exercises for Sec. 8-1 236
8-2 Finding the Roots of Nonlinear Functions 237
Exercises for Sec. 8-2 240
8-3 Numerical Integration 241
Exercises for Sec. 8-3 245
8-4 Simultaneous Linear Equations 246
Exercises for Sec. 8-4 251
8-5 Curve-Fitting by Least-Squares Approximation 251

Exercises for Sec. 8-5 256

viii

CONTENTS

CHAPTER 9 ADVANCED STRING PROCESSING

9-1 Basic Functions
Exercises for Sec. 9-1
9-2 Applications
9-2.1 Lexical Analysis
9-2.2 Keyword-In-Context (KWIC) Indexing

9-2.3 The Application of Bit Strings to Information Retrieval

9-2.4 Text-Editing
Exercises for Chapter 9

CHAPTER 10 LINEAR DATA STRUCTURES

10-1 Pointers in PL/]

10-2 Structures

Exercises for Sec. 10-2

10-3 Arrays of Structures

Exercises for Sec. 10-3

10-4 Stacks

10-5 Applications of Stacks
10-5.1 Recursion
Exercises for Sec. 10.5-1
10-5.2 Polish Expressions and Their Compilation
Exercises for Sec. 10-5.2
10-5.3 Partition-Exchange Sorting
Exercise for Sec. 10-5.3

10-6 Queues

10-7 Simulation

Exercise for Sec. 10-7

10-8 Linked Linear Lists

Exercises for Sec. 10-8

109 Applications of Linked Linear Lists
10-9.1 Polynominal Manipulation
10-9.2 Hash-Table Techniques
10-9.3 Radix Sorting

Exercises for Chapter 10

CHAPTER 11 TREES

11-1 Introduction

11-2 Storage Representation and Manipulation of Binary Trees

11-2.1 Linked Storage Representation
11-2.2 Threaded Storage Representation

11-2.3 Conversion of General Trees to Binary Trees

Exercises for Sec. 11-2

11-3 Applications of Trees
11-3.1 The Symbolic Manipulation of Expressions
11-3.2 Binary Search Trees

258

259
260
261
261
263
267
272
282

284

285
285
288
289
292
295
297
297
298
302
309
312
313
313
316
328
329
339
340
340
348
359
363

369

370
370
370
374
380
383
387
387
389

CONTENTS

11-3.3 Tree Sorts
11-3.4 Trie Structures
Exercises for Chapter 11

APPENDIX REFERENCE SUMMARY FOR PL/I AND PL/C

INDEX

Section A — Notation

Section B — Basic Concepts

Section C — Executable Statements

Section D — Declarations

Section E — Variables and Expressions

Section F — Procedures

Section G — Built-in Functions

Section H — Format Items

Section I — Major Differences Between PL/I and PL/C
Section J — References

390
393
398

401
401
403
408
414
418
420
424
427
428

429

ix

CHAPTER

INTRODUCTION
TO PL/I
PROGRAMMING

Interactions involving humans are
most effectively carried out through the
medium of language. Language permits
the expression of thoughts and ideas,
and without it, communication, as we
know it, would be very difficult indeed.

In computer programming, a
programming language serves as the
means of communication between the
person with a problem and the computer
used to help solve it. Languages are said
to affect the thought and culture of
those who use them. Eskimos, for
example, have a large vocabulary simply
on the subject of snow. An effective
programming language enhances both
the development and the expression of
computer programs. It must bridge the
gap between the too often
unstructured nature of human
thought and the precision required
for computer execution. The
programming language shapes the
thought processes of the programmer,
and the qudlity of the language has
a large effect on the quality of the
programs produced with it.

INTRODUCTION TO PL/I PROGRAMMING

1-1 INTRODUCTION

This book is intended to supplement the text An Introduction to Computer
Science: An Algorithmic Approach. Its purpose is to provide an introduction to the
programming language PL/I, sufficient to enable the reader to implement the
algorithms of the main text.

As much as possible, we attempt to parallel the presentation of the main
text. In our presentation, we assume that the pertinent sections of the main text
have been read. The algorithmic language of the main text has been designed for
easy translation into several popular programming languages, including PL/L.

The purpose of this chapter is to define a perspective for the material in this
book by providing a brief overview of the development and use of the PL/I
language.

1-2 A SHORT HISTORY OF THE PL/I LANGUAGE

In the early days of computing, programming was a very formidable task.
Many of the early computers were “hard wired” to perform a specific task: to
change the “program” required rewiring components. John von Neumann was the
first to propose the concept of the stored program, that is, the idea that the
instructions of the program be stored in the memory of the computer along with the
data. Before long, people began to look for more convenient ways of specifying
these instructions, moving from low level (i.e., machine-oriented) symbolic
assembly languages through to higher level problem-oriented programming
languages.

One of the first general purpose problem-oriented programming languages
was FORTRAN (FORmula TRANslator), introduced in 1954 and designed for the
solution of scientific numerical problems. FORTRAN was instrumental in
demonstrating the value and cost effectiveness of problem-oriented programming
languages, and soon other such languages began to appear, with COBOL
(COmmon Business Oriented Language) for business applications, ALGOL
(ALGOrithmic Language) for problems in numerical mathematics, LISP for list
processing applications primarily in artificial intelligence, and SNOBOL for
applications involving string manipulation, proving to be the most enduring.

Late in 1963, a committee consisting of IBM personnel and customers began
to consider the design of a new programming language, intended originally as a
major FORTRAN enhancement. During the design process;, features were borrowed
from the other languages mentioned previously and incorporated, perhaps in
slightly different form, into the new language, which was eventually named PL/I.
The first official PL/I manual was published in 1965, and the first compiler was
available in 1966.

PL/lis a very large and a very general language, with features appropriate to
the solution of a very wide range of problems. Its use as a teaching language has
been enhanced by the development of student-oriented compilers, perhaps the
most popular of which is PL/C, developed at Cornell University. Such compilers
support only those features of PL/I appropriate to student programmers and offer
powerful error diagnostic capabilities to aid in learning the language. Also, the cost
of running programs under PL/C is low, thus permitting its use in large classes.

14 THE APPROACH OF THE BOOK

1-3 THE USE OF A PROGRAMMING LANGUAGE

As described earlier, a programming language serves to aid in the
transformation of a problem solution into an executable computer program. In
fact, a language that is well-designed enhances not only the expression of the
solution, but also its development as well.

Once a problem solution has been formulated in terms of a computer
program in some programming language, it must then be translated into the
machine language of the computer on which the program is to be run. Machine
language is not programmer-oriented; machine language programs are nothing
more than long strings of numbers, but written in such a way as to be meaningful to
the computer. The translation of a program written in a high level programming
language (sometimes called the source program) to its machine language
equivalent (sometimes called the object program) is handled through a special
program known as a compiler.

For a given programming language, there may be many compilers. For
example, there will be a different compiler for every different type of machine that
supports the language. Even on the same machine, there may be several compilers
for the same language. For example, in addition to the regular compiler (say, the
regular PL/I compiler) there may be one or more student compilers (such as PL/C)
that support perhaps fewer features of the language but offer special instructional
capabilities.

Often the action of a compiler appears transparent to the programmer, but
never completely so. For example, the compiler can often detect errors made in the
writing of the program that would prevent it from running correctly. Other errors
may escape its detection, and not be discovered until the translated machine
language program (or the object program) is actually in execution. The distinction
between compile-time and run-time is described more completely in Chap. 2.

1-4 THE APPROACH OF THE BOOK

Although we are dealing with the language PL/I, where possible, we will be
running our example programs under the PL/C compiler. There are some subtle
differences that ought not to affect the beginning programmer, but may be of more
concern as more progamming experience is acquired. A list of the major
differences can be found in the Appendices.

When first learning the PL/I language, it is very easy to be overpowered by
detail. Since PL/I is by design intended for a wide range of applications, almost
every feature of the language comes with many variants and options, most of which
are unimportant to the beginning programmer. We have tried to ease this problem
through a layered presentation that matches the presentation of the main text.
When a feature of the language is first introduced, it is described in such away as to
be useful immediately to the beginning programmer. Variations and additional
options are deferred until motivated by actual problem requirements.

Much has been said and written in recent years on an approach to
programming known as “structured programming.” Structured programming is
really little more than that application of a particular discipline to the practice of
programming. The evidence seems clear that students produce better programs in
a shorter time span with this philosophy. The presentation in this book is consistent
with the teachings of structured programming.

INTRODUCTION TO PL/I PROGRAMMING

With this short introduction, you are now ready to begin your study of the
PL/I language.

BIBLIOGRAPHY

BACKUS, JW., et al: “The FORTRAN Automatic Coding System” (ed.,
S. Rosen), in Programming Systems and Languages, McGraw-Hill
Book Company, New York, 1967.

CONWAY, RW., and WILCOX, T.R.: “Design and Implementation of a
Diagnostic Compiler for PL/I”, Communications of the ACM, Vol. 16,
No. 3, March 1973, 169-179.

IBM System 360 Operation System: PL/I Language Specifications, IBM Corp.,
C28-6571-0, Data Processing Division, White Plains, N.Y., 1965.

SAMMET, J.E.: Programming Languages: History and Fundamentals, Prentice-
Hall Inc., Englewood Cliffs, N.J., 1969.

TREMBLAY, J.P., and BUNT, R.B.: An Introduction to Computer Science: An
Algorithmic Approach, McGraw-Hill Book Company, New York, 1979.

CHAPTER

FUNDAMENTAL
PL/I CONCEPTS

This chapter introduces several of the
fundamental concepts of programming in
the PL/I language. The presentation closely
follows that of Chap. 2 in the main text.
The chapter begins with a simple overview
of solving problems in PL/I, including data,
its representation and manipulation, and the
use of variables. Simple input and output
operations are discussed. This discussion
should be sufficient to allow the novice
programmer to write very simple PL/I
programs. The process of preparing a
program to run under the PL/C compiler is
explained and some instruction on program
execution, debugging, and tracing is given.
The chapter concludes with complete PL/I
programs for the applications developed in
Chap. 2 of the main text.

