The L‘amputer Comes of Age

The Computer Comes of Age

The People, the Hardware, and the Software

R. Moreau

Translated by J. Howlett

The MIT Press
Cambridge, Massachusetts
London, England

English edition © 1984 by The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by
any means, electronic or mechanical, including photocopying, recording, or by
any information storage and retrieval system, without permission in writing from
the publisher.

Original edition copyright © 1981 by Bordas, Paris, published under the title
Ainsi naquit Uinformatique.

This book was set in Baskerville by The MIT Press Computergraphics
Department and printed and bound by The Murray Printing Co. in the United
States of America.

Library of Congress Cataloging in Publication Data

Moreau, René.
The computer comes of age.

(The MIT Press series in the history of computing)
Translation of: Ainsi naquit I'informatique.
Bibliography: p.

Includes index.

1. Computers—History. 2. Programming languages
(Electronic computers)—History. I. Title. II. Series.
QA76.17.M6713 1984 001.64'09 83-9424
ISBN 0-262-13194-3

Series Foreword

René Moreau’s book inaugurates a new series devoted to the history
of computer and data processing. Future volumes will deal with various
aspects of the development of systems, hardware, and software, and
there will be both general works and specialized monographs. Some
works being planned for the series will be of a biographical and even
autobiographical nature, and others will concentrate on either a par-
ticular development, such as magnetic memory, or the technical history
of an industrial company.

The first book in the series is by René Moreau, manager of scientific
development for IBM France. He is the author of a general computer-
oriented work on the theory of languages (1975) and of computer-
based analyses of the language of General De Gaulle and of the
language used in the election campaigns by Giscard D’Estaing and
Mitterrand.

The history of computers and data processing is a relatively new
subject. There are numerous specialized historical presentations within
this area, but this is the first book to attempt to make a synthesis of
the whole subject. René Moreau has given us a technical history that
centers on problems and their solutions, stage by stage, from the
beginnings of this subject until the year 1963, when the IBM Series
360 computers introduced a new age in the history of technology.

In this book each of the major concepts and devices is explained
or described in its historical context. Accordingly, this book should be
of significance for any reader wishing to understand the development
of information processing and information theory (or informatics).
Rene Moreau has enlarged our understanding of the development of
technology and of the role of machines in modern society. All readers

viii Series Foreword

will be stimulated by his fresh point of view and his deep insight into
the significance of information technology.

I. Bernard Cohen
William Aspray

Preface

It is not uncommon to read that the first computer was the MARK
I, or the Harvard-IBM machine, or perhaps ENIAG; but it is seldom
stated that the IBM Selective Sequence-Controlled Electronic Calculator
(SSEC) alone can claim this distinction. There is the same uncertainty
in dating the first formulations of the main concepts of what we now
call computer science —multiprogramming, operating systems, tele-
processing, programming languages, and so on. There are at least
two reasons for this. The definitions of the concepts can vary from
one writer to another, and it is often difficult to select from the multitude
of facts relating to these concepts the one or the few that indicate the
origins of the most significant developments.

It seemed to me that it would be interesting to give an account of
the history of the computer and of computer science that, while ad-
dressed to the nonspecialist, would define these concepts as precisely
as possible and, taking the majority view of the knowledgeable writers,
would assign dates to first formulations. Thus the book is not simply
a history of one particular technology; it is also an exposition of the
main ideas and concepts to which this technology has given rise. As
a,work of popularization, it may give to the reader who does not work
in the field of computers some familiarity with the subject. As a history,
it may give the specialist a better feeling for the origins of this subject.

The bibliography of so broad a subject could fill several volumes;
the bibliographical entries given here are works actually cited in or
having a direct bearing on the text.

Translator’s note: Certain conventions have been adopted for this edition. First,
author’s notes are cited by superscripts 1, 2, 3, ... ; translator’s notes, by
superscripts a, b, ¢, ... ; both author’s and translator’s notes appear at the back
of the book. Second, text in square brackets is an insertion by the translator.

x Preface

Before concluding this preface, I should like to thank all those who
have given me so much help, whether in reading and criticizing my
text or in providing me with documents.

Contents

Series Foreword — vii
Preface ix

Introduction 1

The Birth of the Computer 4

1

Problem Solving and Its Mechanization 4
2

Mechanical Machines 10

3

Electromechanical Machines 21

4

Electronic Machines 33

5
Conclusion 46

2

The First Generation: 1950—1959 48
1
1950-1954: Evolution 49

2
The Development of Other Information Supports

3
Conclusion 87

69

vi Contents

3

The Second Generation: 1959—1963 89
1
Meeting the Needs of the Users 92

2

Batch Processing 108

8

Direct-Access Shared-Use Systems 121

4
Conclusion 131

4

Programming Languages 148

1

The Low-Level Languages 150

2

The First High-Level Languages 159
3

Formally Defined High-Level Languages
4

Functional Languages 178

5
Conclusion 182

5

Conclusions 186

167

Appendix: Early Work on Computers in the USSR

Author’s Notes 203
Translator’s Notes 209
Bibliography 211
Index 219

197

Introduction

Twenty years ago very few people, apart from the small number
actually in the field, had ever heard of computers, let alone seen one.
But in 1980 it is estimated that about 50 percent of the venture capital
invested during the past few years has gone into computer hardware
and software companies. In France, according to the Accountant Gen-
eral (Cour des Comptes) the total value of the computers and associated
equipment installed was over $10,000 million. The computer has al-
ready invaded most human activities; who among us has never called
upon its services, usually without knowing it, whether in running one’s
washing machine, checking one’s wristwatch, or using the automatic
cash dispenser at one’s bank? Who for that matter has never seen a
computer, at least in its physically smallest form, now called the micro-
processor, which can be bought in the big stores or the specialist shops
for a few hundred dollars? The transformation has been so rapid that
it seems to have been brought about by some magician, more or less
diabolical, waving a mysterious magic wand.

Twenty years ago, however, the main concepts of computer science
had already been formulated, and there is no mystery about this; they
were the culmination of a slow intellectual and technological evolution
that began at a very early period in the history of mankind. Today’s
computers, of whatever shape or form, do not differ in essence from
those of that time; moreover, the main kinds of uses had already been
defined and the main fields of application sketched out. By the end
of 1963 or the beginning of 1964 computer science had in some sense
come of age.

From the point of view of the early 1980s, the period ending in
1963 can be regarded as belonging to the history of the technology
with which this book is concerned. It is now possible, because of the
passage of time, to see papers that up to now have been held as
confidential, and thus to give a more exact account than had previously

2 Introduction

been possible of the more recent developments in computer science,
still too closely linked with people still alive. This historical period is
described here, together with accounts (to put it as simply as possible)
of the main concepts forming the skeleton of computer science as we
now know it. This history can serve therefore as an introductory course
on the subject.

The first chapter deals with the “gestation” period of computer
science, which stretches from the earliest times to the appearance of
the first computer early in 1948. In this account of the linking of the
various concepts and attempts at construction leading to the first cal-
culating devices, then to the true calculators, and finally to the computer,
I do not have the space to describe all the abaci, calculating instruments,
and other machines that mathematicians, astronomers, and military
engineers have built over the years for the evaluation of mathematical
functions. I have dealt only with those that contribute directly to the
understanding of the historical account. In the second chapter I speak
of the “infancy” of computer science. Before it could be considered
to be adult, the subject had to grow, and its essential device, the
computer, had to develop from the research laboratories where it was
born into a manufacturable product. This period lasted from 1949 to
1959; it is not fortuitous that computer specialists when describing
the technology of the computer call this period the “first generation.”
I have chosen that title for this second chapter. The third period, from
1959 to 1963, is that of “adolescence,” during which computers started
to invade all human activities. It has been called the “second generation”
of computers, the title and subject of the third chapter.

This division into three periods can be regarded as corresponding
to three main phases of the evolution of the technology: realization
of the computer in the first, development of supporting and ancillary
equipment for storing information in the second, and during the third
the development of operating systems for the control and exploitation
of the computer’s resources—systems intended for the replacement
of the human operator, who was becoming incapable of reacting to
the ever increasing speed of the machine.

The same division into three periods corresponds equally well to
the three main phases in the development and use of the principal
languages of communication between man and machine. Before 1948
the languages used were very primitive; the first of the more highly
developed languages appeared during 1948-1959; and 1959-1963
saw the birth of all the languages now most in use. But because the
development of languages is linked less closely to that of the machine

Introduction 3

than is the development of other technologies, I have dealt with this
in a separate chapter, the fourth.

The history of this whole period is in every aspect so complex that
in the interest of clarity it has been necessary to select particular events,
particular pieces of hardware, and particular manufacturers. An attempt
to cover everything would have been very difficult and led to a far
too bulky book. It was therefore necessary to decide either not to
mention this or that machine or manufacturer or not to say very much
about them. Since no such choice can be made purely objectively,
there will inevitably be some criticisms of those made here. It is not
only the choice of facts that poses problems; there is also that of dates,
for different dates for the same event can often be found in the
literature. There are at least three phases in the development of a
computer product: conception, announcement, and installation in a
user’s premises. I have usually chosen the date of announcement,
which has also been done most often in the relevant literature.

1

The Birth of the Computer

Ever since the invention of numbers, humanity has tried to make
instruments to help in performing calculations. There were tablets for
calculating earlier than 3000 B.c., and the well-known Chinese bead
frame existed well before the birth of Christ; but tablets, bead frames,
and abaci are all completely nonautomatic. The idea of mechanizing
calculation is very old, although it was not a practical possibility until
mechanical engineering (whose finest applications had been in the
design and making of clocks) became sufficiently highly developed. In
the early nineteenth century the British astronomer and mathematician
Charles Babbage described what could have been a machine with the
ability to perform any calculation whatever; but unfortunately the
mechanical-engineering technology of the time provided neither the
reliability nor the speed that were necessary for the realization of his
dream. The construction of the first calculators had to await the arrival
of electromechanical technology, and it was the development of elec-
tronics that led to the first computers.

1 Problem Solving and Its Mechanization

If it is to carry out a calculation, 2 machine must know the route it
has to follow. But a machine has no intrinsic knowledge and knows
nothing about the external world; therefore it has to be given instruc-
tions on how to proceed in the minutest detail. The details of the
method of solution of a problem that can be performed by a machine
are in the form of a statement of a sequence of operations that the
machine has to carry out. We call this the process. This way of describing
a process is in fact common practice, and we use it whenever we
follow what we may call an algorithmic procedure.

The Birth of the Computer 5

L Read the first valuej

Y

Yes 4————l£ this the last val@—» No

|
Read the next value

l

End of task

Figure 1.1
Reading a table of values.

Algorithmic Procedure

Among the problems continually presenting themselves for solution
are a very large class for which the process of solution can be given
in advance in terms of a finite number of exact statements of operations
to be used in order to produce a specific result. Figure 1.1 illustrates
this type of procedure by showing the steps that must be followed in
order to read a table of values. We say that a procedure for solving
a problem is algorithmic when it can be expressed as a sequence of
statements of operations to be performed and when no knowledge
or intelligence is required beyond what is strictly necessary in order
to perform these operations. The statements must therefore be suf-
ficiently clear and precise as to present no difficulties of interpretation.
The diagrammatic representation of an algorithmic procedure is called
a flowchart.

The statements in an algorithmic procedure are of two types. The
first type is illustrated in Figure 1.1 by “Read the first value” or “Go
from the part of the flowchart where the operation required is to print
the value read to that where the operation is to check whether the
last value has been read.” These are what we might call imperative
commands and we describe such statements as unconditional. The sec-
ond type can be put in this general form: “If such-and-such a result
is observed, then do this else do that.” Such a statement in figure 1.1
is “If the value in the table that has been read is the last value, then
the task is ended else read the next value.” These are called conditional
or logical statements.'

6 The Birth of the Computer

Thanks to the conditional statement there is the possibility, at any
stage in a procedure, of choosing between different routes to follow
from there on depending upon the conditions at that stage: for example,
whether or not to read another value from the table. A procedure
with no conditional statements permits of no variations at all and
therefore can be used only to solve a single problem: for example,
“Read a value from the table.” The inclusion of conditional statements,
on the contrary, allows a very much broader class of problems to be
solved by making it possible to vary the procedure according to the

requirements of the individual problems.

Algorithms

From now on we shall be concerned only with problems for which
the process of solution, expressed as an algorithmic procedure, can
be given to a machine and followed step by step by the machine until
the result is obtained. To put it another way, we shall be studying
only those types of algorithmic procedures corresponding to classes
of problems that can be attacked with the help of a machine. We
shall speak of operations to be performed rather than of statements,
and of algorithms rather than of algorithmic procedures.

In general, an algorithm is constructed for the solution of a problem
when it has been found, by reasoning or by experience or as a result
of teaching, that a process for the solution can be described as a
sequence of operations that can be performed without any need to
attach meaning to them. We learn such step-by-step processes for
solving certain problems from our earliest school days: for example,
the addition or multiplication of numbers, finding square roots, and
finding the volume of a sphere. These methods are all algorithms;
they all lead from the use of a finite number of operations required
to solve a particular problem (for example, the addition of 21 and 33)
to their use in solving a broad class of problems (for example, the
addition of any two numbers).

Algorithms have a long history. Those for addition, multiplication,
and division were produced in prehistoric times. The Babylonians are
a case in point; they devised algorithms for the solution of decidedly
complex arithmetical problems posed by their studies of the movements
of the stars and the planets. The word itself, however, comes from
the name of the Persian mathematician Abu Ja’far Mohammed Ibn
Musa Al Khowarismi, whose writings on arithmetic circa 825 A.D.
influenced for centuries the development of mathematics.

The Birth of the Computer 7

Algorithmic Processing

As I have said, carrying out the sequence of operations represented
by the statements forming an algorithm requires nothing more than
what is necessary to understand these operations; therefore the process
is essentially mechanical. Thus if a machine can be built for this special
purpose, it will perform better than any human because it will follow
the sequence precisely without any variation and will not tire. It is
not surprising therefore that the idea of mechanizing algorithms is
very old. (Rosenberg[1969}, who gives attempts to mechanize algorithms
before the year 1000 A.D., holds that the most typical were those made
by Gerbert d’Aurillac, who became Pope Sylvester II in 999.)

What characteristics must a machine have in order to carry out
such a sequence of operations, which we shall call algorithmic processing?
At the outset, it must be able to deal with the two types of statement—
unconditional and conditional respectively—defined earlier. For un-
conditional statements the machine must be able to perform the specific
operations required by the algorithms; for example, it must have a
device that can add two numbers. Such operations or transformations
fall into two groups. In one are the operations of transferring infor-
mation from one part of the machine to another. In the other are the
operations having a single operand, called unary operations (such as the
operation of changing the sign of a quantity, the quantity concerned
being the operand), those having two operands, called binary operations
(such as that of adding together two numbers, those numbers being
the operands), and, further, operations having more than two operands,
although these are much less common.* For conditional statements
the machine must be able at least to perform simple tests, such as to
decide whether one number is greater than another. Such operations,
whether unary or binary, are called logical operations.

Operations of this type—transfer, unary, binary, logical —are called
the primitive operations of the process. The elementary arithmetical and
logical operations are of very great importance in any algorithmic
process, as is easily seen from a consideration of a few examples. To
answer the question “What is the sum of the first 10 numbers?,” one
needs only to make 10 additions—arithmetical operations—testing
after each one to find whether that was the tenth. It is less obvious
that a yes-or-no type of question can be answered by similar sequences
of operations. Consider, for example, the question whether the word
“greatness” occurs in a particular piece of writing of General de Gaulle’s.
To answer this, each word of the text must be given a code number,
the same number for each occurrence of the same word and a different
number for each occurrence of a different word; the text is thus

8 The Birth of the Computer

Salary scale —————

Social security contribution —— Algorithm l——— Salary

Overtime ————
L Y J k____w—_l _Y_/

Initial data Processing Results

Figure 1.2
Algorithmic processing: calculating salaries.

represented by a sequence of numbers. The machine starts with the
first number and subtracts from it the number representing the word
“greatness”; if the result is zero, the two numbers are the same and
“greatness” has been found as the first word of the text. If not, the
machine moves on to the next number in the sequence and repeats
the operation, and so on. If it arrives at the end of the text without
recording a zero result, then the answer to the original question is no.

A machine that can carry out algorithmic processing must therefore
have a number of basic operations. It must be able to perform the
fundamental operations of arithmetic, and for this it must have what
is called an arithmetical unit; similarly, it must have a logical unit for
the logical operations. The two are often combined in one unit, called
the arithmetical-logical unit (ALU). Finally, the actual performance of the
operations as a sequence in time must be monitored and directed,
and for this there is a special unit, the control unit.

The effect of any algorithm is to transform the set of elements
supplied to it at the start into the set forming the results. For the
calculation of a salary, for example, the starting, or initial, set can
include salary scale, hours of overtime worked, social security con-
tribution, and so on; Figure 1.2 illustrates this.

The quantities involved in an algorithmic process can be either
numerical—numbers, financial accounts, statistical observations—or
nonnumerical —letters, phrases, pieces of text, and also, for example,
music; music as a sequence of sounds can be coded by a function of
the amplitude of the sound, measured at regular intervals.” Thus al-
gorithmic processing can be applied to an extremely wide range of
types of elements. In fact, the fields of application of algorithms are
so numerous that one can say that an algorithm can be provided for
any problem for which one knows a method of solution. In what
follows the word data will be used to describe any elements that can
be coded and thus subjected to algorithmic processing.

The alphabet used most frequently for coding data inside the machine
is the binary because this is the easiest to represent in physical equip-

