B THE MCGRAN-HLL COPANES [0
- FORDONATIONONLY
NOT FOR RESALE

HIGHER EDUCATION
13ASA002

THE McGRAW - HILL COMPANIES
FOR:DONATION ONLY
NOT FOR RESALE

Efw Irwin]
fil McGraw-Hill

Boston, Massachusetts Burr Ridge, lllinois Dubuque, lowa
Madison, Wisconsin New York, New York San Francisco, California St. Louis, Missouri

Irwin/McGraw-Hill

A Division of The McGraw-Hill Companies

This book was sct in Bembo type by TBH Typecast, Inc.
Development and production management were provided by Cole and

Associates.
The editors were David M. Shapiro and Elliot Simon,;

production coordination was done by Simon & Assocs.

The cover and interior were designed by Seventeenth Street Studios.
Ilustrations were done by Advanced Presentations.

R.R. Donnelley & Sons Company was printer and binder.

This book is printed on acid-free paper.

LEARNING C++

Copyright © 1991 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. No part of this publication may be repro-

duced or distributed in any form or by any means or stored in a data base
or retrieval system without the prior written permission of the publisher.

7890 DOCDOC 90987

ISBN 0-07-023983-5

Library of Congress Cataloging-in-Publication Data

Graham, Neill, (date).
Learning C++ / Neill Graham.
p- cm.

ISBN 0-07-023983-5

1. C++ (Computer program language) I Title. IL Title:
Learning C Plus Plus.
QA76.73.C153G73 1991
00513'3 —dc20 90-44655

N

C++ and C

Preface

This book is an introduction to C++ and object-oriented pro-
gramming for readers who know at least one programming
language (which will probably be Pascal) but who are not neces-
sarily familiar with C.

C++, an object-oriented extension of C, addresses the needs
of two recent trends: the widespread use of C as a software
implementation language, and the increasing interest in object-
oriented programming.

C is by far the most popular language for professional soft-
ware development on minicomputers and microcomputers.
While offering all the known advantages of a higher-level lan-
guage, C also provides the low-level access to hardware and sys-
tem software that is characteristic of assembly language. Many
microcomputer software packages that were originally written
in assembly language have now been translated into C.

Object-Oriented Programming

Object-oriented programming allows a complex program to
be built out of much simpler constructs called objects, which
interact by exchanging messages. The following are characteris-
tic of object-oriented programming:

PREFACE vii

About This Book

viii

= Classes. Objects are defined by means of classes; once a class
has been defined, any number of objects of that class are
easily created. Programmers are thus encouraged to reuse
code by defining general purpose classes and using them in
many different applications.

= Abstraction. To use an object, we need only know its public
interface—what messages it understands and how it
responds to each. We do not need to know anything about its
internal workings, which are hidden from the object’s users.

» Inheritance. A new class can be derived from one or more
existing classes and can inherit some or all of their proper-
ties. This further encourages code reuse because classes
derived from a general-purpose class can be customized as
needed for each particular application.

* Polymorphism. Different kinds of objects can understand the
same message, though they may respond to it in different
ways. We can send such a message without knowing what
kind of object is involved. For example, objects represent-
ing different geometrical figures might all respond to a
message to draw the corresponding figure on the screen; we
could send a draw message to any such object and be
assured that the appropriate figure will be drawn.

The background in C necessary for effective use of this book
is provided in Chapter 1 (program structure, data types, expres-
sions, and control statements) and in Chapter 3 (arrays, pointers,
and strings).

The study of object-oriented programming begins in Chapter
2, which introduces the basic concepts and develops a simple
bank account class as an example. Although Chapter 3 is devoted
mainly to the elements of array and pointer manipulation, it does
introduce the C++ new and delete operators, and it defines a
class of dynamic lookup tables to illustrate all the material in the
chapter.

Chapter 4 covers operator and function overloading as well as
friend functions and operators. This chapter introduces a differ-
ent approach to object-oriented programming, in which objects
are passed as arguments to overloaded friend functions and oper-
ators rather than being sent messages via member functions.

LEARNING C++

In Chapters 5 and 6 we return to more conventional object~
oriented programming. Chapter 5 develops inheritance; although
multiple inheritance is introduced and illustrated, most of the dis-
cussion and examples focus on single inheritance, which begin-
ners should master before going on to the more complicated
multiple inheritance. Chapter 6 introduces polymorphism and its
implementation via virtual functions; abstract base classes and pure
virtual functions are also covered.

Chapter 7 develops a discrete-event simulation as a case study.
Most examples in the preceding chapters have involved a con-
ventional main program interacting with one or more objects; a
major goal of Chapter 7 is to present a program whose computa-
tions proceed mainly via message passing between objects. This
simulation does not use the C++ task library, which is not avail-
able in all implementations and which hides some details that it
is instructive to work through.

Chapter 8 is devoted to further exploration of the input-
output library. A complete discussion of this intricate library is
beyond the scope of this book; instead, we focus on the follow-
ing areas: the stream classes (which provide a good example
of multiple inheritance); controlling the format of output and
the expected format of input; detecting errors and end-of-file;
using named files, such as disk files; using command-line param-
eters; and a brief introduction to direct access with tellg()
and seekg().

Appendix 1 provides a list of reserved words, and Appendix 2
provides a chart showing the precedence and associativity of
operators. A comprehensive glossary defines important terms in
C++ and object-oriented programming, and the “For Further
Study” section suggests additional readings.

PREFACE ix

AT&T Releases and Turbo C++ Appendix

Acknowledgments

C++ was developed at AT&T, and for now the AT&T com-
piler and reference manual set the standard for the language.
Most current software and books are based on AT&T Release 2.0,
which was expected to be the final revision of the language prior
to the development of an ANSI standard for C++.

To correct some problems with Release 2.0, however, a small
number of changes were made. These resulted in Release 2.1,
which appeared while this book was in the final stages of prepa-
ration. This book is based on Release 2.0; however, the most
important changes in Release 2.1 are discussed briefly, mainly in
footnotes.

The example programs in this book have also been tested with
Turbo C++, which is compatible with AT&T Release 2.0. As the
first C++ implementation from a major supplier of microcom-
puter software, Turbo C++ is expected to enjoy a substantial
share of the market for MS-DOS C++ implementations. Ap-
pendix 3 is an introduction to Turbo C++ and its integrated
development environment. Also discussed are a few problems in
Version 1.00 of Turbo C++ that must be worked around in
order to run some of the example programs.

For their helpful comments on various drafts of the manu-
script, the author expresses his appreciation to J. Eugene Ball,
University of Delaware; Krys J. Kochut, University of Georgia;
Robert McCoard, California State University, Northridge;
Tomasz Miildner, Acadia University; Roy Ogawa, University of
Nevada, Las Vegas; and Steven Stepanek, California State
University, Northridge.

LEARNING C++

Contents

PREFACE, vii

1

Elements of C++

HELLO, WORLD!, 1

Comments, 1

Source Files, 1

Header Files and #include Directives, 3

Functions and main(), 4

Input and Output, 4

FUNCTION DECLARATIONS, DEFINITIONS,
AND CALLS, 7

IDENTIFIERS, 9

VALUES, TYPES, AND CONSTANTS, 10

Integer Types, 10

Floating Types, 14

DATA OBJECTS, 15

Declaration, Initialization, and Assignment, 16

Constant Data Objects, 18

Scopes of Identifiers, 19

Lifetimes of Data Objects, 20

OPERATORS AND EXPRESSIONS, 21

Avrithmetic Operators, 22

Assignment Operators, 23

Increment and Decrement QOperators, 26

Equality, Relational, and Logical Operators, 27

CONTENTS

Conditional Expressions, 29

The Comma Operator, 30

Functions That Take Arguments and Return
Values, 31

Side Effects and Sequence Points, 33

TYPE CONVERSIONS, 35

Implicit Conversions, 36

Explicit Conversions, 37

EXAMPLE: COMPUTING DISCOUNTS, 39

CONTROL STATEMENTS:. REPETITION, 42

The while Statement, 42

The Ao Statement, 43

Example: The Inverse Fibonacci Rabbit Problem,
44

The for Statement, 46

Example: Computing Interest, 48

CONTROL STATEMENTS: SELECTION, 52

The if and if-else Statements, 52

The switch Statement, 56

EXERCISES, s9

2

Classes and Objects

OBJECT-ORIENTED PROGRAMMING, 61
Objects and Classes, 61
Methods, Messges, and Data Hiding, 63

CLASSES, 63 Function Declarations, 149

Classes Declared with struct, 64 Declaring and Setting _new_handler, 153
Member Functions, 66 Reading Characters and Strings, 155
Constructors and Destructors, 70 Using a Pointer to Constant Data, 158
Classes Declared with class, 73 EXERCISES, 158

Compiling and Linking, 74

Example: A Program Using Class account, 8o

MORE ABOUT MEMBER FUNCTIONS, 81 4

Function Overloading, 81 Operators and Friends

Default Arguments, 87

Inline Expansion, 88 OPERATOR OVERLOADING, 163
Constant Objects and Functions, 94 FRIEND FUNCTIONS AND OPERATORS, 168
LINKAGE, 96 CLASS vector, 1711

EXERCISES, 98 Constant Definitions, 174

The Component Array, 174
Constructors, 175

3 Memberwise Initialization and Assignment, 175
Arrays, Pointers, and References Addition, Subtraction, and Multiplication, 179
Equality Operators, 181

ARRAYS, 102 Assignment Operators, 181
POINTERS, 107 Subscripting Operator, 184
The Address-of Operator, 109 Conversion to a Scalar Magnitude, 185
Pointers and Arguments, 110 Input and Output, 186
Pointers to Class Objects, 112 Demonstration Program, 187
ARRAYS AND POINTERS, 113 DEFENDING AGAINST MULTIPLE
Array Names as Pointers, 113 INCLUSIONS, 189
Subscripting Pointers, 115 CLASS string, 191
Pointer Arithmetic, 116 String Representation, 192
Using const in Pointer Declarations, 120 Copying and Reference Counts, 192
STRINGS, 122 Construction, Destruction, and Assignment, 197
FUNCTIONS EOR STRING PROCESSING, 125 Concatenation, 205
REFERENCE TYPES, 131 Comparisons, 208
MEMORY MANAGEMENT WITH new AND Function pos (), 209

delete, 134 Function 1length(), 210
TYPE-NAME DEFINITIONS, 138 Function refs (), 210
EXAMPLE: CLASS table, 139 Subscripting, 211
Class Declarations, 140 Substring Extraction, 212
Class Implementation, 142 Input and Qutput, 213
EXAMPLE: A PROGRAM USING CLASS Demonstration Program, 214

table, 149 EXERCISES, 218

iv LEARNING C++

5

Inheritance: Derived Classes

EXAMPLE:. BANK ACCOUNTS, 221

Class account and the Keyword protected,
222

Class sav_acct, Public Base Classes, and
Constructors, 227

Class chk_acct, 230

Class time_acct and Redefining Inherited
Functions, 232

DEQUES, QUEUES, AND STACKS, 234

Implementation of Class deque, 238

LINKED LISTS, 243

Classes 1ist and node, 244

Defining Derived Classes, 249

Using ilist and inode, 252

EXTENDING AN EXISTING CLASS, 254

MULTIPLE INHERITANCE, 257

Virtual Base Classes, 260

EXERCISES, 264

6

Polymorphism: Virtual Functions

POINTERS, REFERENCES, AND VIRTUAL
FUNCTIONS, 267

Heterogeneous Lists, 269

Virtual Functions, 269

EXAMPLE: BREEDS OF DOGS, 273

ABSTRACT BASE CLASSES AND PURE
VIRTUAL FUNCTIONS, 278

EXAMPLE: GRAPHICS FIGURES, 280

Using ANSI Escape Sequences, 282

Class figure, 283

Class block, 284

Class box, 288

Class triangle, 289

CONTENTS

Class 1abel, 290

Example Program: Heterogeneous Linear List, 292

Example Program: Heterogeneous Linked List,
295

EXAMPLE: EXPRESSION TREES, 299

Class Declarations: Structure of Expression Trees,
303

Class Declarations: Expression Evaluation, 304

EXAMPLE: STATE MACHINES, 305

Static Class Members: Class Variables and
Functions, 309

Class state, 310

Classes state_S, state_W, and state_P,
315

Demonstration Program, 316

EXERCISES, 318

7

Case Study: Event-Driven Simulation

THE MACHINE-ADJUSTMENT PROBLEM,
323

Discrete, Event-Driven Simulations, 323

THE WORKINGS OF CHANCE, 326

The Geometric Distribution, 327

Class geometric, 328

ACTIVE OBJECTS, 334

Class active, 336

Class machine, 336

Class adjuster, 342

MANAGING AND COORDINATING
RESOURCES, 345

Resource Coordinators, 346

Class manager, 347

THE SCHEDULER, 351

Class scheduler, 352

THE MAIN PROGRAM, 357

Sample Run, 362

EXERCISES, 363

8

More About Input and Output

THE BASIC INPUT-OUTPUT CLASSES, 367

FORMAT-STATE FLAGS, 369

FORMAT-STATE PARAMETERS, 372

SETTING FLAGS AND PARAMETERS, 372

FORMATTING EXAMPLES, 375

DETECTING ERRORS AND END-OF-FILE,
379

CLASSES FOR NAMED FILES, 381

INPUT AND OUTPUT WITH NAMED FILES,
382

USING COMMAND-LINE PARAMETERS, 387

DIRECT ACCESS, 389

EXERCISES, 392

vi LEARNING C++

Appendix 1
C++ KEYWORDS, 394

Appendix 2
OPERATOR PRECEDENCE AND
ASSOCIATIVITY, 395

Appendix 3
TURBO C++, 397

GLOSSARY, 409
FOR FURTHER STUDY, 417
INDEX, 418

Elements of C++

HIS CHAPTER introduces the basic C++ constructions:

variable declarations, arithmetic expressions, function
calls and definitions, and input, output, and control statements.
Because these constructions occur in many programming lan-
guages the concepts behind them will already be familiar, so we
will be able to concentrate on how these concepts are expressed
in C++.

HELLO, WORLD!

Comments

It is a tradition in C and C++ to begin any introductory text
or programming course by discussing a program that prints the
message “Hello, world!” Listing 1-1 shows the hello-world pro-
gram; we will use an extended discussion of this program as a
framework for introducing several C++ concepts.

The first two lines in Listing 1-1 are comments, although they
will not seem to be such to readers familiar with C. Comments
in C are enclosed between the symbols /* and * /.

/* This is a comment */
Such a comment can extend over any number of lines.

/* Now is the time
for all good programmers
to put comments in their programs */

ELEMENTS OF C + + 1

Listing 1-1

// File hello.cpp
// Program to print a greeting to the user

#include <iostream.h>
main()

{
cout << "Hello, world!\n";

Source Files

This style of comment is also allowed in C++. However,
C++ also provides another style, in which a comment begins
with // and extends to the end of the line. Since the comment
always extends to the end of the line, no closing symbol (such as
* /) is needed:

// This is a comment

// Now is the time
// for all good programmers
// to put comments in their programs

The latter style is usually the easiest to write and is the style
generally preferred by C++ programmers.

The text of a program is stored on disk in one or more source
files; each source file is printed in this book as a listing. At the
beginning of each source file is a comment giving the name of
the file; the name of the source file for the hello-world program
is hello.cpp.

In this book we assume that the names of C++ source files
end with . cpp; however, some C++ implementations use .c,
.C, .cp, or . cxX. If the file-naming conventions for your com-
puter system or C++ implementation differ from those assumed
here, you will not be able to use the file names in this book
unchanged. Nevertheless, they will still help you keep track of
the source files listed here, particularly for programs having more
than one source file.

LEARNING C++

Header Files and #include Directives

Every C++ implementation comes with a library of pre-
defined functions, operators, and other entities. Programmers are
encouraged to use these predefined entities, but are required to
declare them in each source file in which they are used. To pre-
vent programmers from having to memorize the necessary decla-
rations and write them out repeatedly, the implementation
provides a number of header files, each of which contains the
declarations for a certain part of the library.

The first step in compiling a C or C++ program is carried out
by the preprocessor, which manipulates the text of the program in
accordance with preprocessor directives, all of which begin with the
symbol #. A header file is inserted into a program with an
#include directive, which the preprocessor replaces with the
contents of the header file. The hello-world program uses the
library facilities for stream output; the necessary declarations are
contained in the header file iostream.h* which the program
includes with the directive

#include <iostream.h>

The angle brackets enclosing the file name are made up of the
less-than sign, <, and the greater-than sign, >. As with source
files, the naming conventions for header files vary. In some
implementations, iostream.h would be named io-
stream.hpp or iostream.hxx.

The part of the library declared in a particular header file is
often referred to by the name of the header file. Thus, the part of
the library declared in iostream. h is referred to as the iostream
library, the part of the library declared inmath. h is referred to as
the math library, and so on.

* Earlier versions of C++ (those preceding AT&T Release 2.0) used the header
file stream.h instead of iostream.h; thus #include directives for stream.h
will be found in many existing C++ programs. Although Release 2.0 provides a
header file stream. h for use by existing programs, iostream.h is recommended
for new programs.

ELEMENTS OF C + + 3

Functions and main ()

Input and Output

The basic building blocks of C++ programs are functions,
which correspond to functions, procedures, and subroutines in
other languages. Each function carries out a well-defined opera-
tion and is called or invoked whenever that operation is needed.
Functions may be defined in the program, or they may be pre-
defined functions from the library. When library functions are
used, the header files containing the necessary declarations must
be included.

Parentheses are associated with functions in that they always
appear in function declarations, definitions, and calls. When
function names appear in running text, it is a convention of C
and C++ to follow each function name with a pair of paren-
theses to indicate that the name refers to a function. Thus, a func-
tion named main is referred to as main() rather than main.

The system executes a C++ program by calling the function
main(); therefore, every C++ program must define main().
Simple programs, such as the hello-world program, define only
main(); more complex programs also define other functions,
which are called directly or indirectly from main().

In Listing 1-1, the definition of main() has the following
form:

main()

{

}

The empty parentheses following the function name main indi-
cate that function main() takes no arguments; that is, no data is
passed to it when it is called. The braces, { and }, which corre-
spond to the keywords BEGIN and END in some other lan-
guages, enclose a block, which is a basic unit for grouping
declarations and statements. The statements defining a function
are always enclosed in a block. In Listing 1-1, the block that
defines main() contains only a single statement.

The C++ library provides facilities for input and output that
are far more convenient than the library functions that C
programmers use. In C++, input is read from and output is

LEARNING C++

written to streams. When iostream. his included in a program,
several standard streams are defined automatically. The stream
cin is used for input, which is normally read from the user’s
keyboard. The stream cout is used for output, which is nor-
mally sent to the user’s display. Some operating systems allow
these streams to be redirected so that, for example, input from
cin could be read from a disk file and output to cout could be
written to another disk file.

The insertion operator, <<, inserts data into a stream. Thus the

statement
cout << 500;

places the value 500 in the standard output stream cout. If the
output stream has not been redirected, the number 500 will be
printed on the user’s display.

A series of << operators can be used to output several data
values with a single statement. For example,

cout << 500 << 600 << 700;

outputs three numbers. However, the insertion operator does not
separate printed items with spaces, so the three numbers will be
run together in the printed output.

500600700

A string is a sequence of characters. In a C++ program, a
string is represented by a string literal, which is a series of charac-
ters enclosed in quotation marks. When a string literal is inserted
in cout, the characters making up the string (but not the enclos-
ing quotation marks) are printed. Thus, the statement

cout << "This is a string";
prints

This is a string
Likewise,

cout << 500 << ", " << 600 << ", " << 700;
prints

500, 600, 700

C++ uses escape sequences to represent characters that are not
represented by traditional symbols such as a, b, and ¢. An
escape sequence consists of a backslash, \, followed by a letter or

ELEMENTS OF C + + 5

number representing the character. The entire escape sequence
represents a single character. The following are some common

€scape sequences:

\a alert—causes the computer or terminal to beep

\n newline—causes the display or printer to start
printing on a new line

\t tab—causes the display or printer to jump to a pre-
defined tab stop, as if the tab key had been pressed

\" quotation mark inside a string literal
\\ backslash

Because quotation marks indicate where a string literal begins
and ends, an escape sequence must be used to get a quotation
mark inside a string literal. Thus the statement

cout << "\"Hello,\" she said.\n";
prints
"Hello," she said.

and (because of the final \n) positions the display or printer at
the beginning of the next line.

Because a backslash always signals an escape sequence, the
backslash character itself must be represented by an escape se-
quence, \\. This must be borne in mind particularly by users of
the MS-DOS and OS/2 operating systems, which use back-
slashes in file names.

Now, finally, we are in a position to understand the single
statement in the hello-world program. The statement

cout << "Hello, world!\n";
prints the message
Hello, world!

and positions the display or printer at the beginning of the next
line.

Note that each statement ends with a semicolon. Statements
constructed with operators and function calls are known as
expression statements; an expression statement always ends with a
semicolon.

LEARNING C++

