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PREFACE

Test engineering has long been a vital, recognized specialty within the broad field
of electrical and computer engincering. In recent years, advances in design have
been outdistancing advances in testing. New circuits can now be designed and
placed into production faster than adequate automated test programs can be written
for them. While some products are now being designed with built-in test features,
and computer aids for test engineers are being improved, the rapid growth in
application-specific integrated circuits is keeping the demand high for engineers
with some background in testing. Not only do semiconductor manufacturers and
high-volume users need test and product engineers who are directly concerned with
automated testing, they also need designers who have an appreciation for test
engineering and who can anticipate and design out test problems.

This text developed from handout notes prepared for our undergraduate classes
in semiconductor device testing. Although we do not cover board-level testing,
most of the concepts discussed apply directly to board testing. The book, when
used in the classroom, is intended for junior or sénior students in electrical and
computer engineering. We have also taught the material, with considerable success,
to hardware-oriented computer scientists and to electrical engineering technologists.
As much as possible, we tried to make the text stand on its own, making it useful
for the practicing engineer as well as the student. The only prerequisites are some

xi
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experience with a high-level computer language and an elementary understanding
of digital logic and electric circuits. Knowledge of microprocessor fundamentals is
helpful but not essential.

There are two important points regarding the book’s focus: First, there is
limited coverage of the mathematics of automated test pattern generation: second,
there is detailed discussion of an example of an automated tester and its control
language. We strongly feel that an extensive exploration of the mathematics of
automated pattern generation techniques is out of place in an introductory text.
" Automated test generation has, as yet, limited application to very large scale circuits,
due in part to the inherent inefficiencies of the algorithms used. In addition, the
user of such tools does not need to be expert in the underlying algorithms, any
more than a computer programmer needs to know compiler theory. However, we
believe wholeheartedly in requiring students to learn something of the architecture
of testers and of the details of their programming languages. Programming test
equipment is not like programming ordinary computers; there is an interrelationship
between the hardware and software far closer than anything students will have
encountered previously. In teaching courses in test engineering, we have found
repeatedly that students who seem to have overall concepts well in hand find it
difficult to apply them in specific situations. So the essence of our approach is
detailed application of general knowledge. We heartily endorse this approach, which
we have used with great success.

In the past, when one used a specific, detailed tester language, the class either
had ready access to actual automated testers and support software or conducted
purely paper exercises. Since real testers are almost never available to universities,
the first approach is effectively restricted to industrial classes taught by ATE makers
or users. Academics have been limited to rather unsatisfactory imaginary practice.
Fortunately, the situation has changed recently. Lorimac Softwares, of Tempe,
Arizona markets a tester language compiler and a tester simulator that run on IBM
PC compatible microcomputers. Their language, LSTL, is derived from and similar
to actual tester languages. The language example used in this book closely resembles
LSTL, differing mostly in the handling of prograni branching. The text’s program
and exercises are readily translated to the Lorimac structures.

A one-semester course should be adequate to cover the entire text. If additional
outside material is introduced (for instance, to expand coverage of test pattern
generation algorithms beyond that in appendix C), some of the material in chap-
ter 5 may be deleted. We do not recommend deletion of the section on guardbands,
because an introduction to guardbanding will expose the student to brand new ideas
about tolerances and margins beyond tolerances. The first five chapters alone will
provide enough material for a good short course in testing fundamentals, suitable
for a two-year technology program or an in-house industrial course in test concepts.

As countless others have pointed out, producing a textbook involves assistance
from a great many sources. The book certainly benefited from the valuable sug-
gestions of many people. We would especially like to thank Jesse Wilkinson of
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Teradyne Corp., whose painstaking review and thoughtful comments were of great
help; and our wives, Alisa and Lori, whose monumental patience, understanding,
and encouragement were essential to the completion of this book.

BoB FEUGATE
STEVE MCINTYRE
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AUTOMATED TESTING
OVERVIEW

1.1 INTRODUCTION

During the 1970s and 1980s, integrated circuits (ICs) reached incredible levels of
sophistication, with manufacturers fabricating circuits containing many tens of thou-
sands of logic gates on a single chip. Figure 1.1 illustrates the remarkably rapid
growth of circuit complexity during the last two decades. To design such complex
circuits, an array of computer-aided design tools was developed. These tools dra-
matically reduced the time required to design new circuits, giving rise to a multntude
of individual large-scale part types.

However, it is not sufficient just to design and manufacture integrated circuits;
semiconductor manufacturers and users must also verify that the circuits work as
intended. Semiconductor manufacturing processes are so complex that this verifi-
cation cannot be done on a sampling basis; rather, each VLSI circuit must be
individually tested. In the fast-paced productlon environment, the slow speed and
high labor costs of manual testing dictate automated testing of ICs. A sizable indus-
try specializing in automated test equipment and ancillary support equipment has
emerged to serve the peeds of circuit manufacturers and users.

As the use of automated test equipment (ATE) has grown, so has the demand
for engineers and programmers to develop the programs that control these testers.
The problem of program development is aggravated not only by a shortage of test

!
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Figure 1.1 Integrated Circuit Complexity versus Time.

engineers but also by the difficulty of developing the programs themselves. In many
ways, testing a very large scale integrated circuit is more difficult than designing
it. It is both possible and likely that a large integrated circuit will contain embedded
elements that cannot be tested externally, even by forcing the circuit through every
conceivable operating state. For complex circuits, such exhaustive testing becomes
impossible. As an example, Feuer has shown that an exhaustive test of the 8080
microcomputer, only modestly complicated by today’s standards, would take over
10%° years, at one million tests a second.' Thus, the test engineer’s task is to create
adequate tests that run in limited time. (Incidentally, the definition of what con-
stitutes an ‘‘adequate’’ test is not simple. We explore this point in some depth in
chapter 7.) The test engineer’s problem is complicated by having few computer
aids that approach the usefulness of the designer’s CAD systems.

The primary roadblocks in VLSI «ircuit development are test program de-
velopment and verification, not design and fabrication. There are several approaches
to integrated circuit design using computer-stored building blocks that make it
possible to develop chips tailored to individual purposes. Depending on the situation,
these building blocks may range from generalized logic gates (gate-arrays) to com-
plex microcomputers. Regardless of the techniques used, the result is an application-
specific integrated circuit (ASIC) that has functional characteristics different from
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any other IC. The IEEE’s Spectrum magazine has examined the possibility of
creating a *‘one-month’’ VLSI circuit—an IC that could be brought from conception
to production in 30 days using ASIC development tools. The experts surveyed for
the magazine’s articles concluded that, while the design and fabrication of the chip
could be done in a month, *‘it is clear that, in the immediate future, VLSI chips
will not be exhaustively tested, and certainly not in one month.”* Clearly, testing
large and very large scale integrated circuits is of great importance to semiconductor
users and manufacturers. Great emphasis continues to be placed on ways to improve
test programmer productivity and to design ICs that are easier to test.

In this text, we explore test engineering in some depth to give readers an idea
of the scope and complexity of test engineering. The first two chapters provide the
background necessary to develop a concept of where testing fits into the overall
semiconductor manufacturing sequence and to understand what circuit parameters
are actually tested. In the four following chapters, we examine in great detail a
hypothetical automated tester architecture and the associated test programming
language. During this examination, we prepare an actual test program for a typical
IC. After completing these chapters, readers should understand ATE programming
basics and have a good concept of the challenges of test engineering.

After chapter six, the material is more general, as we present an overview of
automated test programming aids and discussions of some of the solutions to classic
VLSI testing situations, such as testing memeories or microcomputers. We conclude
by presenting some methods that designers can use to ease the test burden by
including test capabilities in their original circuit designs.

1.2 THE IC MANUFACTURING SEQUENCE

Integrated circuits are tested at least twice during the manufacturing sequence: first
before the wafer is separated into individual circuit dice and again after the dice
have been packaged into completed circuits. In the next chapter, we present an
overview of the processes by which the circuits are initially created on the wafer.
Now we focus on the manufacturing steps that take place after wafer fabrication is
complete. (Shown in figure 1.2.) First, completed wafers are subjected to a wafer
sort test, during which faulty devices are identified and marked with dots of ink.
The marked wafers are then separated into circuit dice by a scribe and break process.
The circuits are scribed or partially sawn apart with a diamond saw or laser scriber,
then subjected to pressure with a roller. The wafers break cleanly along the saw,
cuts, separating into the individual rectangular circuit dice. Ink-marked rejects are
culled out and discarded.

Each good die is mounted on a supporting base with epoxy or a gold, silver,
or copper eutectic solder paste. Next, fine gold wires are used to connect bonding
pads on the die to lead pins that will be used for external circuit connections. When
all bonding wires are attached, the rest of the circuit’s external package is completed.
The packaged but unmarked circuits then undergo final testing to find and remove
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circuits that were damaged during assembly or that somehow slipped through the-
wafer sort test. In many cases, good parts are further separated into different
performance categories, based on operating speed, temperature performance, and
so on, during final testing. Circuits failing final test may. be discarded immediately
but are usually held for analysis to determine the causes of the failures.

After passing their electrical tests, circuits intended for high-reliability ap-
plications undergo still further tests, this time mechanical. They are immersed in
heated baths of an inert chemical such as Freon to check that their packages are
hermetically sealed. Air bubbles escape from faulty packages and are easily seen

Figure 1.2 Post-Fabrication Semiconductor Manufactdring Steps.
a. IC probing during wafer sort testing (courtesy of Electroglas).
b. Seribing wafers after testing (courtesy of Kulicke and Soffa Industries, Inc.; photo by
Leon Oboler). r

¢. Bonding wires to connect package leads to chip (courtesy of Kulicke and, Soffa In-
dustries, Inc.; photo by Michael Denese).

-
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Figure 1.2 (2)
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in the Freon. The reason for such leak tests is that over long periods the moisture
that enters through leaks causes corrosion at the interfaces between different metals
used in the circuits and their packages, eventually causing device failure.

Having passed all their tests, good circuits are marked with their manufac-
turer’s trademark, the part number, and a code identifying the time and place of
manufacture. Once again the circuits are inspected for cosmetic defects such as
smeared marks or bent or short package leads. Bent leads are straightened, smudged
marks redone, and packages with nonstandard leads separated to be sold at cut
rates. Finally, the circuits are packed in antistatic carrying tubes and shipped to
customers. '

1.3 AUTOMATED TEST EQUIPMENT

The general category of automated test equipment, or ATE, includes a wide range
of computer-controlled systems for testing subsystems, modules, circuit boards,
components, and semiconductor devices. Each class of equipment has its own
hardware and software characteristics. In this book, we restrict ourselves to com-
puter-controlled systems for testing integrated circuits. Although many of the con-
cepts we present also apply to board-level testers, the two fields are really somewhat
distinct. Board-level testing attempts to detect and identify failed components on
a complete circuit board, while IC testing tries to identify circuits that fail to meet
their published performance specifications. For complex ICs, this task becomes
formidable. Attempting to deduce, purely on the basis of terminal measurements,
whether a circuit composed of more than 100,000 transistors and as many inter-
connections works properly in all possible situations is, for practical purposes, an
almost insurmountable task. Board-level testing is marginally simpler in that the
intermediate circuits and-interconnections are available to the tester.

1.3a Comparison Testers

The simplest form of integrated circuit tester is the comparison tester, by
means of which the device being tested is compared to a ‘‘golden device'” which
is known (or at least assumed) to meet all specifications. As shewn in figure 1.3a,
the circuit under test and the ‘‘golden device'’ are simultaneously stimulated with
a sequence of test patterns (also called test vectors). The resulting outputs are
compared, and, as long as the output of the unit under test matches the output of
the golden device, the test circuit is assumed to be good.

Advanced comparison testers include programmable input drive voltages and
output comparison voltages, so that tésting can be done at data sheet limits (we
discuss data sheet specifications thoroughly in chapter 2). Figure 1.3b shows a
representative comparison tester. The golden device is mounted on a circuit board
and inserted into the tester. Comparison testers are relatively small, tabletop pieces
of equipment. Because of their simplicity, comparison testers are relatively low in



