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PREFACE

A few years ago parallel computers could be found cnly in research laboratories. Now
they are available commercially. For this reason we are entering an exciting period,
when work on parallel algorithms can progress beyond design and analysis into .im~
plementation and use. This book has two primary goals: to familiarize the reader with
classical results and to provide practical insights into how algorithms are made to run
efﬁcncntly on processor arrays, multiprocessors, .and multicomputers.

* Chapter 1 puts paraliel computing in perspective, showing the need for mghcr-
performance computers and summarizing methods used in the past to increase computer
performance. Chapter 2 begins with a presentation of a number of fundamental pro-
cessor organizations and continues with a description of three parallel computer ar-
Chitectures: the processor array, the multiprocessor, and the multicomputer. Chapter
3 addresses many of the Pfﬁq .y issues confronting the designer of parallel algo-
rithms.

The chapters after Chapter 3 are more specialized: Chapter 4 presents some
important results in parallel sorting from the large body of work done in this area.
Chapter 5 discusses dictionary operations and illuminates trade-offs between the com-
plexity of the underlying sequential algorithm and the potential for keeping a large
number of processors busy doing useful work. Matrix multiplication is a fundamental
component of many numerical and nonnumerical algorithms. Results in parallel matrix
multiplication appear in Chapter 6. Chapter 7 describes parallel numerical algorithms
to solve recurrence relations, partial differential equations, and systems of linear equa-
tions. Chapter 8 surveys parallel algorithms for searching graphs and finding conneq;ed
components, minimum spanning trees, and shortest paths in graphs.

The final three chapters address current trends and past successes. Areas in which
paralle] computing may have a significant impact in the future include artificial intel-
ligence and logic programming. Chapter 9 describes potential parallelism in the solution
of combinatorial search problems. These problems occur in artificial intelligence,
operations research, and graph theory, among other areas. Chapter 10 introduces
Prolog, a logic programming language, and summarizes approaches to executing logic

XV



Xvi PREFACE

programs in parallel. Pipelined vector processors have been of great historical impor-
tance; two well-known machines, the Cray-1 and Cyber-205, are surveyed in Chapter
11.

The principal audience for this text is intended to be seniors and graduate students
in computer science. Suggested prerequisites are calculus, high-level language pro-
gramming, data structures, operatmg systems, computer architecture, and the analysis
of algorithms.

The book includes many parallel algorithms written in"a machine-independent,
high-level pseudocode. Experimental results from implementations of parallel algo-
rithms have been included wherever possible. Important results have been presented
as theorems, to make them easier to reference. Each chapter ends with a set of exercises.
They range from the elementary to the difficult. A Glossary of parallel computing
appears after Chapter 11. References are given throughout the text, and a large bib-
liography appears at the end of the book. A solutions manual is available to instructors
only. -

I have taught a one- semester graduate-level course in paralle] computing at the
University of New Hampshire, using earlier drafts of this book. I recommend that you
supplement the exercises with actual programming assignments on a paraliel computer
or a simulator. Programming a parallel computer is a new, difficult, and exciting
experience for most students, and they learn a great deal from their efforts. In addition,
graduate students should read recent journal articles and conference papers. With these
supplements, there is more than enough material for a one-semester course, giving
the instructor some latitude. I have usually taken an “historical” approach, covering
Chapters 1, 11, 2, and 3 before the midterm examination and Chapters 4, 5, 6, 8, 9,
and 10 in less depth after the midterm.

Kai Hwang, B. Jayaraman, and Vipin Kumar provided many helpful suggestions
that led to a substantial impfovement in the quality of the text between the first and
second drafts. Kaye Pace, my editor at McGraw-Hill, always made me feel as if I
were her only responsibility. Let me extend my thanks to everyone involved in the
praduction of the book.

I feel fortunate to have had as my dissertation advisor Narsingh Deo, who intro-
duced me to the area of parailel algorithms. I am grateful to Donald Knuth and numerous
unknown sapport people, who made the TEX typesetting system public, and to L.
Michael Gray, who installed and maintained the TEX environment at the University
of New Hampshire. I had felt for some time that there was a book in me, waiting to
get out. Seeing my words transformed into bcautlfully typeset output was all the catalyst

“I needed.

Finally, I would like to thank my teachers throughout the years who provided me -

with such an inspiring example.

é

A
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- : CHAPTER

—  ONE
INTRODUCTION

This book is concerned with parall& computing, the process of solving prob-
lems on parallel computery. Paralied computing is a relatively young field: the
Illiac IV, a processor arrky, bectnfnfpcational in 1975; the first Cray-1, a
pipelined vector precessor, was delivered in 1976; and low-cost multiprocessors
were not available before 1984. The advent of very large-scale integration (VLSI)
heralded a new era in computing: not only did it make the personal computer
possible, but also it made practical the development of large-scale computing
deviees consisting of tens, hundreds, even thousands of processors, all working
together to perform a computation.

Although the study of parallel computing is a new discipline, it is far from
unimportant. Many programs that run well on conventional computers are not
easily transformed to programs that efficiently harness the capabilities of parallel
computers. Conversely, algorithms that are less efficient in a sequential context
often reveal an inherent parallelism that makes them attractive bases for paraliel
programs. 3 -

Many claim we are entering “the decade of the parallel computer.” Appli-
cations demand computers that are many orders of magnitude faster than the
fastest computers available today. Parallelism represents the most feasible av-
enue to achieve this kind of breakthrough, and countries throughout the western
world are vigorously developing ever more powerful parallel computers. Some
of these computers are quite expensive: the Connection Machine, marketed by
Thinking Machines Corporation, contains up to 65,536 processors and costs $3
million. Other parallel computers cost little more than professional work sta-
tions. Low-cost multiprocessors and multicomputers have been announced by
Ametek, Arete, Encore, Intel, NCUBE, Sequent, and other companies.
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The remainder of this chapter puts the problem of parallel computing in
context. Section 1-1 lists a few applications that demand computers much faster
than those presently available. Section 1-2 presents a brief history of architec-
tural advances used to increase the performance of computers over the past 35

3 . This section also explores the difference between pipelining and parallel-

. igm. Section 1-3 introduces the architectural classification schemes of Flynn and
Handler. Finally, Section 1-4 examines reasons that have traditionally been given
opposing the feasibility of high-level parallel computation. Some of these reasons
can now be refuted easily; others are more weighty. It is good to remember that
it takes a special kind of creativity to unleash the full power of a parallel archi-
tecture. Perhaps that is the best reason to study parallel computing: Success is
more difficult and hence more rewarding.

1-1 THE NEED FOR HIGHER-PERFORMANCE
COMPUTERS

The increasing power of computers has led to greater visions ‘of what they might
be able'to do. Hwang and Briggs [1984] point out that mainstream computer
usage is gradually becoming more and more sophisticated, progressing from data
processing.and information processing to knowledge processing and, eventually,
intelligence processing. Each level of increasing sophistication demands much
more pawerful computers. We consider a few examples of current applications
>that could use extremely powerful eomputers. Although most of these applica-

. tions are using computers for “number crunching,” other applications are using
computers to manipulate symbols or ideas. Hwang and Briggs [1984] are the .
primary source of information for these examples; their text contains more in-
formation about these and other uses..

Weather Prediction

Forecasting the weather on a computer requires the solution of general circu-
lation model equations in a sphericai coérdinate system. A three-dimensional
grid partitions the atmosphere by altitude, latitude, and longitude. Time is the
fourth dimension; it, too, is partitioned by specifying a time increment. Given
a grid with 270 miles on a side and an appropriate time increment, about 100
billion operations must be performed to compute & 24-hour forecast. This can
be dome in about 100 minutes on a computer capable of performing 100 mil-
lion operations per second, such as a Cray-1.” A grid this coarse is capable of
producing a forecast for New York and Washington, D.C., but not for Philadels -
- phia, located approximately halfway between the other two cities. To get‘a more
accurate forecast for Philadelphia, the grid size would have to be halved in all
four dimensions, leading to a 16-fold increase in the number of computations re-
quired. A computer capable of 100 million floating-point operations per second
(100 megaflops), like the Cray-1, would require 24 hours to complete the 24-hour .~
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forecast. Even this new grid size would not be sufficiently fine to allow reliable
long-range forecasting. If-we want to receive accurate long-range forecasts, much
more powerful computers must be developed.

Og_mputational Aerodynamics

Wind tunnel experiments h#ive a number of fundamental limitations. These in-
clude the model size, wind veloeity, density, temperature, wall interference, and
other factors. Numerical flow sirnulations have none of these limitations. The re-
placement of wind tunnels by computers has been limited only by the processing
speed gnd memory capacity of the computer being used. The Burroughs Cor-
poration and Control Data Corporation have proposed supercomputers, known
as the numerical aerodynamic simulation facilities, with the goal of eliminating
the need for wind tunnels. These supercomputers are designed to perform more
than a billion floating-point operatiotis per second (gigaflops). :

Researchers at the University of Illinois, supported by a grant from the
National Science Foundation, have begun using supercomputers to study wind
shear. Using computational aerodynamics to “fly” simulated airplanes through
mitrobursts, they hope to learn moré about microbursts and the dangers posed
to commercial aviation [USA Today 1985].

Artificial Intelligence

Most current computers have a relatively inflexible input/output (I/O) interface.
If computers are to become more “user-friendly,” they must be able to interact
with humans at a higher level, ysing speech, pictures, and natural language.
Allowing voice, pictorial, and natural language input to be handled in real time
requires an enormous amount of computing power, much more than is available
on standard architectures. T ‘

* Japan has begun a project to develop fifth-generation computers. - One of
the goals of the project is to build & computer capable of making 100 million
to 1 billien logical inferénces per second. Since one logical inference may take
anywhere from 100 to 1000 machine instructions to execute, such a machine
would have to be able to perform between 10 billicn and 1 trillion instructions
per second. ’ :

Remote Sensing

The analysis of earth-resource data broadcast from satellites has many applica-
tions in agriculture, ecology, forestry, geology, and land use planning. However,
images are often so large that even simple calculations require large amounts
of CPU time. For example, a single Thematic Mapper image from the latest
Landsat satellite is a 6000-picture element (pixel) by 6000-pixel’square. Each
pixel is represented by 8 bits; the entire picture is made up of eight images, or
bands:" A single picture, then, is represented by 288 megabytes of information. N
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NASA has installed the Massively Parallel Processor (MPP), manufactured by
Goodyear Aerospace, to perform satellite image processing.

Nuclear Reactor Safety

The importance of being able to do simulations in real time is evident when
you consider the problem of providing computer-aided analysis and simulation
of events in a nuclear reactor. The ability to double-check a corrective measure
before it is taken could help keep minor malfunctions from turning into major
catastrophes. Only supercomputers have the processing speed that would enable
such calculations to be done in real time.

Military Uses

Many existing supercomputers are being used by agencies doing research for the
military. These agencies use supercomputers to design nuclear weapons; simu-
late their effects, gather intelligence, and process cartographic data in order to
generate maps automatically. Since the U.S. Department of Defense continues to
support research into parallel computing, clearly it desires even faster computers.

1-2 METHODS USED TO ACHIEVE HIGHER
PERFORMANCE

There has always been a demand for faster computers, and computer engineers
have used two methods to achieve higher performance. First, they have in-
. creased the speed of the circuitry; second, they have increased the number of
operations that can take place concurrently, through either pipelining or par-
allelism. This section highlights the advances made since the inception of the
electronic computer, showing how pipelining and parallelism have worked their
way into the design of modern high-performance computers. The book by Hock-
ney and Jesshope [1981] serves as the primary source of information on these
advances.
Figure 1-1 illustrates how computer performance has increased over the past
three decades. There has been roughly a 10-fold increase in the speed of computer
- arithmetic every 5 years. For exainple, the speed of floating-point multiplication
increased by a factor of about 1,000,000 between the early 1950s and the early
1980s. Only some of the increase can be attributed to an increase in the speed of
components. Architectural advances must be credited with the remainder of the
increase. For example, the clock of the MPP is only about 1 order of magnitude
faster than the clock of the EDSACI; the rest of the speedup is due to the ability
of the MPP to perform 16,384 multiplications in parallel.
The speed of light puts a ceiling on the speed at which electronic components
of a certain size can operate. Hence parallelism has been introduced at many
levels to improve the performance of computers. Many different architectural
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advances have been made over the past three decades. Some of these advances
are summarized below. Frequently an advance was only possible because a new
technology became available. Such new technologies will be mentioned where
appropriate.

Bit-Parallel Memory and Bit-Parallel Arithmetic

The first electronic digital computers used a bit-serial main memory. Each bit
of a word was read individually from memory. The EDSAC, SEAC, Pilot ACE,
EDVAC, and UNIVAC all had mercury delay line (ultrasonic) bit-serial memo-
ries. : :
The first memory to allow all the bits in a word to be accessed in parallel
was a cathode ray tube (CRT) system named after F. C. Williams of Manchester
University in England. Although Williams used the CRT in bit-serial mode,
the SWAC computer at the Institute for Numerical Analysis in England used
Williams tubes in a parallel mode with the kth bit of memory words stored in
the kth CRT. Williams tubes in parallel mode were also used in the computer
at the Institute for Advanced Study and in the IBM 701 (1953).

Bit-parallel arithmetic became possible once bit-parallel memory was avail-
able. The IBM 701 was the first commercial machine to have bit-parallel arith-
metic.

A prototype ferrite core memory was constructed by Jay Forrester at M.I.T.
in 1950. The IBM 704 (1955) was the first commercial computer to use core
memory. Besides allowing bit-parallel memory access, cores had the advantages
of zero standby power, reasonable cost, speed for general-purpose applications
(especially in large systems), and nonvolatility.

1/0 Processors (Channels)

In first-generation computers 1/O instructions were executed by the CPU. I/O
devices continued to become faster (a magnetic tape drive is about 100 times
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o] o)

1/0 processor l
Memory control unit ‘_4——'
crPu ‘ (Multiplexer) - Memory

Figure 1-2 1/O processors are one of the architectural advances distinctive of second-gener-
ation computers.

s

faster than a card reader), but even the data transmission speed of a tape drive
was far slower than the data manipulation speed of a processor. Because the
electromechanicel 1/O devices-were much slower than the electronic CPU, the
CPU spent most of its time idling while executing an I/O instruction. This
inefficiency frequently 'was a cause of poor performance [Hayes 1978].

The problem was solved by introducing a separate processor to handle I;0
operations. This I/O processor, called a channel, receives 1/O instructions from
the CPU but then works independently, freeing the CPU to resume arithmetic
processing. The channel has its own instruction set, custom-tailored for 1I/O
operations. Six channels were added to the IBM 704 in 1958; the new computer
was renamed the IBM 709. 1/O processors are one of the architectural advances
distinctive of second-generation computers (Figure 1-2).

Interleaved Memory

An interleaved memory is a memory unit divided into a number of mod-
ules, or banks, that can be accessed simultaneously. Each memory bank has its
own addressing circuitry. Instruction and data addresses are interleaved to take
advantage of the parallel fetch capability. With low-order interleaving the
low-order bits of an address determine the memory bank containing the addréss;
with high-order interleaving the high-order bits of an address determine the
memory bank. Figure 1-3 illustrates the difference between low-order interleav-
ing and high-order interleaving. '

When a computer is being designed, it is important to match the speeds of
the various components. For example, it does no good to have an extremely fast
CPU if the memory unit cannot keep it supplied with instructions and data. The
IBM STRETCH computer (1961) was the first computer to have an interleaved
tnemory. Memory interleaving enabled a relatively slow magnetic-core memory
to keep up with a fast processor. Memory was divided into two memory banks.
Thus, the maximum data transfer rate to and from memory was increased by a
factor of 2.



Memory bank

0 1 2 , 3
0 (0000) [ 1 (0001) 2 (0010) 3 (0011
-t 40100 5 (0101) 6 (0110) 7 @111)
Addresses | g (1000) 9 (1001) 10 (1010} 11 o1
12 (1100) 13 (110D 14 (1110) 15 (1111)

(a)
Memory bank

0 1 2 3
G (0000) 4 (0100) 8 (1000) 12 (1100)
1 (0001) 5 (0101) 9 (1001 C 13 41101)

dd

Addresses | (0010) 6 (0110) 10 (1010) 14 (1110)
3 (0011) 7 (0111 11 (1011) 15 (1111)

U]

Figure 1-3 Memory interleaving. {(a) Low-order interleaving lets the low-order bits of an
address determine the memory bank. (b) High-order interleavirg lets the high-order bits of an
address determine the memory bank.

The ATLAS computer (1963), famous for its innovations in virtual mem-
ory, paging, and multiprogramming, had a four-way interleaved memory. The
CDC 6600 (1964) divided memory into 32 independent banks. Since the IBM
STRETCH, virtually all large computers have used interleaved memory.

Cache Memory

A cache memory is a small, fast memory unit used as a buffer between a
processor and primary memory. The purpose of a cache memory is to reduce
the time the processor must spend waiting for data to arrive from the slower
primary memory. The efficiency of a cache memory depends, in part, on the
locality of reference in the program being run. Temporal locality refers to
the observed phenomenon that once a particular data or instruction location is
referenced, it is often referenced again in the near future [Madnick and Donovan
1974]. Spatial locality refers to the observation that once a particular memory
location is referenced, a nearby memory location is often referenced in the near
future {Madnick and Donovan 1974]. Given a reasonable amount of locality
of referbnce, the majority of the time the processor can fetch instructions and
operands from cache memory, rather than primary memory. Only when the
instruction or operand is not in the cache memory must the processor idle.
Although cache memories began to appear in computers in the ery 1960s,
they were not economical before the introduction of large-scale integration (LSI)
semiconductor memories in the late 1960s. A typical memory hlerarct;y, showing
the position of cache memory, appears in Figure 1-4.



