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Preface

This is essentially a book on linear algebra. But the approach is somewhat
unusual in that we emphasise throughout the geometric aspect of the
subject. The material is suitable for a course on linear algebra for mathe-
matics majors at North American Universities in their junior or semor year
and at British Universities in their second or third year. However, in view
of the structure of undergraduate courses in the United States, it is very
possible that, at many institutions, the text may be found more suitable at
the beginning graduate level.

The book has two aims: to provide a basic course in linear algebra up
to, and including, modules over a principal ideal domain; and to explain
in rigorous language the intuitively familiar concepts of euclidean, affine,
and projective geomeiry and the relations between them. it is increasingly
" recognised that linear algebra should be approached from a geometric
point of view. This applies not only to mathematics majors but also to
mathematically-oriented natural scientists and engineers.

The material in this book has been taught for many years at Queen
Mary College in the University of London and one of us has used portions
of it at the University of Michigan and at Cornell University. It can be
covered adequately in a full one-year course. But suitable parts can also be
used for one-semester courses with either a geometric or a purely algebraic
flavor. We shall give below explicit and detailed suggestions on how this
can be done (in the “Guide to the Reader”).

The first chapter contains in fairly concise form the definition and most
elementary properties of a vector space. Chapter 2 then defines affine and
pro;ectlve geometries in terms of vector spaces and establishes explicitly the
connexion between: these two types of geometry. In Chapter 3, the idea of
isomorphism is carried over from vector spaces to affine and projective
geometries. In particular, we include a simple proof of the basic theorem of
projective geometry, in §3.5. This chapter is also the one in which systems
of linear equations make their first appearance (§3.3). They reappear in
increasingly sophisticated forms in §§4.5 and 4.6.

Linear algebra proper is continued in Chapter 4 with the usual topics
centred on linear mappings. In this chapter the important concept of
duality in vector spaces is linked to the idea of dual geometries. In our
treatment of bilinear forms in Chapter 5 we take the theory up to, and
including, the classification of symmetric forms over the complex and real
fields. The geometric significance of bilinear forms in terms of quadrics is
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Preface

taken up in §§5.5-5.7. Chapter 6 presents the elementary facts about
euclidean spaces (i.e., real vector spaces with a positive definite symmetric
form) and includes the simultaneous reduction theory of a pair of symmet-
ric forms one of which is positive definite (§6.3); as well as the structure of
orthogonal transformations (§6.4). The final chapter gives the structure of
modules over a polynomial ring (with coefficients in afield) and more
generally over a principal ideal domain. This leads naturally to the solution
of the similarity problem for complex matrices and the classification of
collineations.

We presuppose very little mathematical knowledge at the outset. But the
student will find that the style changes to keep pace with his growing
mathematical maturity. We certainly do not expect this book to be read in
mathematical isolation. In fact, we have found that the matenal can be
taught most successfully if it is allowed to interact with a course on
“abstract algebra”. ‘

At appropriate places in the text we have inserted remarks pointing the
way to further developments. But there are many more places where the
teacher himself may lead off in néw directions. We mention some exam-
ples. §3.6 is an obvious place at which to begin a further study of group
theory (and also incidentally, to introduce exact sequences). Chapter 6
leads naturally to elementary topology. and infinite-dimensional Hilbert
spaces. Our notational use of ¥ and £ (from Chapter 2 onwards) is
properly functorial and students should have their attention drawn to these
examples of functors. The definition of projective geometry does not
mention partially ordered sets or lattices but these concepts are there in all
but name.

We have taken the opportunity of this new edition to include alternative
proofs of some basic results (notably in §§5.2, 5.3) and to illustrate many
of the main geometric results by means of diagrams. Of course diagrams
are most helpful if drawn by the reader, but we hope that the ones given in
the text will help to motivate the results and that our hints on the drawing
of projective diagrams will encourage the reader to supply his own.
~ There are over 250 exercises. Very few of these are routine in nature. On
the contrary, we have tried to make the exercises shed further light on the
subject matter and to carry supplementary information. As a result, they
range from the trivial to the very difficult. We have thought it worthwhile
to add an appendix containing outline solutions to the more difficult
EXercists.

We are grateful to all our friends who helped (wittingly and unwittingly)
in the writing of this book. Qur thanks go also to Paul Halmos for his
continuing interest in the book, an interest which has now resulted in the
appearance of this new edition.

: K. W. Gruenberg
April 1977 : A. J. Weir
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Guide to the Reader

This book can be used for linear algebra courses involving varying /
amounts of geometry. Apart from the obvious use of the whole book as a
one year course on algebra and linear geometry, here are some other
suggestions.
(A)  One semester course in basic linear algebra

All of Chapter 1. '

§2.1 for the definition of coset and dimension of coset.

§3.3.

Chapter IV, but omitting §§4.2, 4.7, 4.8.

(B)  One semester course in linear geometry

Prerequisite: (A) above or any standard introduction to linear alge-
bra.

All of Chapter I1.
§§3.1-34. .
Then either (B,) or (B,) (or, of course, both if time allows):

(B) §84.7,48. .
Chapter V up to the end of Proposition 12 (p. 118).

(B,) §85.1-5.4 (see Note 1, below; also Notes 2, 3, for saving time);
§5.6 but omitting Proposition 10; §5.7 to the end of Proposition 12.
§§6.1, 6.3, 6.4 to the “orientation” paragraph on p. 144,

(C)  One year course in linear algebra
The material in (A) above.
Chapter V but omitting §§5.5-5.7.

Chapter VI but omitting the following: §6.1 from mid p. 127 (where
distance on a coset is defined); §6.2; §6.3 from Theorem 2 onwards:

b
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Guide to the Reader

§6.4 from mid p. 144 (where similarity classes of distances are
defined).

Chapter VII, but omitting §7.6.
Notes

1. §§5.1-5.3 can be read without reference to dual spaces. In particular,
the first proof of Proposition 4 (p. 93) and the first proof of Lemma
4 (p. 97) are then the ones to read.

2. The reader who is only interested in symmetric or skew-symmetric
bilinear forms can ignore the distinction betweenn 1 and T. This
will simplify parts of §5.2, and in §5.3 the notion of orthosymmetry
and Proposition 6 can then be omitted.

3. In §5.3, the question of characteristic 2 arises naturally when skew-
symmetric forms are discussed. But the reader who wishes to assume
250 in the fields he is using can omit the latter part of §5.3.

—
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CHAPTER 1

Vector Spaces

There are at least two methods of defining the basic notions of geo-
metry. The one which appears more natural at first sight, and which
is in many ways more satisfactory from the logical point of view, is the
so called synthetic approach. This begins by postulating objects such
as points, lines and planes and builds up the whole system of geometry
from certain axioms relating these objects. In order to progress beyond
a few trivial theorems, however, there must be sufficient axioms. Un-
fortunately, it is difficult to foresee the kind of axioms which are re-
quired in order to be able to prove what one regards as “fundamental”
theorems (such as Pappus’ Theorem and Desargues’ Theorem). This
method is very difficult as an introduction to the subject.

The second approach is to base the geometry on an algebraic founda-
tion. We favor this approach since it allows us to “build in”” enough
axioms about our geometry at the outset. The axioms of the synthetic
geometry now become theorems in our algebraic geometry. Moreover,
the interdependence of the algebraic and geometric ideas will be seen to
enrich both disciplines and to throw light on them both. (For an intro-
duction to the synthetic approach the reader may consult [4], [9].)

1.1 Sets

We shall not define the basic notion of set (or collection, or aggregate)
which we regard as intuitive. Further, we shall assume that the reader
is familiar with the simplest properties of the set Z of integers (positive,
negative and zero), the set Q of rational numbers, the set R of real
numbers, the set € of complex numbers and the set F, of integers
modulo a prime p.

As a sherthand for the statement ‘‘z is an element of the set §” we
shall write x € §. If 8 and T are two sets with the property that every
element of § is an element of 7', we write S< T and say “S is contained
in T’ or that ““S is a subset of 7"”’; equivalently, we also write 7'>.§ and
say “T contains . Note that according to this definition §<§. We

1



2 LINEAR GEOMETRY CHAP. I

shall say that the sets S and T are equal, and write S=7', if S< T and
S>T. If the set § consists of the elements z, y,... then we write
S={z,y,...}. Thus, forexample,z € § if, and only if, {x} =8. Strokes
through symbols usually give the negative: for example, #, ¢, ¢ stand
for, respectively, “is not equal to”, “is not contained in”, “‘is not an
element of ”.

If S and 7 are given sets then a mapping (or function) f of S into T is
a rule which associates to each element s in S a unique element sfin 7.
In these circumstances we shall often write f: S — T or f: s — sf. The
element sf is called the image of the element s under f. (It is often also
written as f(s) or &/ or f,, whichever is the most convenient notation for
the purpose at hand.) The set of all sf as s varies in § is the image of
S under f, or simply the image of f, and is denoted by Sf. If Sf= T then
we say that f is a mapping of § onto T'; if the images under f of any two
distinct elements of S are distinct elements of 7', then f is a one-one
mapping. (The above definition of mapping seems to involve the
undefined notion of “rule”. A more sophisticated definition can be
given in terms of the “graph’ of f which is the set of all ordered pairs
(s, 8f) for s in S. The definition can thus be thrown back on the basic
concept of set.)

The notation sf for the image is particularly suitable if mappings are
to be combined ; more specifically, if fis a mapping of § into 7" and if g is
a mapping of 7 into U, then the product fg is the mapping of § into U
defined by the equation s(fg)=(sf)g. In other words fg stands for
“apply first f, then g”. If one uses the functional notation, then (fg)(s)
=g(f(s))-

On the other hand, there is a situation in which the index notation f,
for the image is better than sf. This occurs when we are interested in
“listing” the elements of the image of § under f. It is then usual to
refer to S as the sef of indices, to call f, the s-term of f, to write f in the
alternative form (f;),cs and to call f a family rather than a mapping.
As s runs through the set S of indices the terms f; run through the
image of § under f. It is important to realize that some of the terms
will be repeated unless the mapping f is one-one.

If an arbitrary non-empty set § is given then we can always “list” the
elements of § by using the identity mapping 15, which sends eachelement
of § into itself.

We mention two familiar examples of this notation:

1. If 1 is the set of all positive integers, then (f,), ., is a sequence.

2. If I is the finite set {1, 2, ..., n}, then (f);, is an n-tuple.

If we take note of the natural ordering of the integers, then the se-
quences and n-tuples above are called ordered sequences and ordered n-
tuples respectively.



§1.2 VECTOR SPACES 3

DermviTION. Suppose that (M), is a family where each M is itself
a set. We define the sntersection ((M,:i € I) of this family to be the
set of all elements which belong to every M, (i € I}; also, the union
U(M,: i e I)is the set of all elements which belong to at least one of the
sets M, (¢ € I). Observe that, for this definition to make sense, I cannot
be empty.

The intersection and union of the sets M, . . ., M, are usually denoted
byM,Nn---NM,and M; U --- U M, respectively.

If we are simply given a (non-empty) set § whose elements M are
sets, then we index S by means of the identity mapping and use the
above definition. The intersection N(M: M € S) is therefore the set of
all elements which belong to every set M in S and the union U(M: M € 8)
is the set of all elements which belong to at least one set M in S.

ExErcises

1. Let S, T be sets, f a mapping of S into 7', g a mapping of T into,S, and
denote by 15, 1,, respectively, the identity mappings on S and 7. Prove
that (i) fg=15 implies that f is one—one; and (i) gf =1, implies that f is
onto T'.  Show that if (i) and (ii) hold, then g is uniquely determined by f.
(In this case we write g=f-"! and call g the inverse of f.)

2. The population on an island is greater than the number of hairs on the
head of any one inhabitant. Show that if nobody is bald then at least
two people have the same number of hairs on their heads.

3. If f, g, h are mappings of S into 7', T into U, U into V, respectively, show
that (fg)h=f(gh). o

1.2 Groups, Fields and Vector Spaces

We assume that the reader is to some extent familiar with the concept
of a vector in three dimensional euclidean space. He will know that
any two vectors can be added to give another vector and any vector can
be multiplied by a real number (or scalar) to give yet another vector,
The primary object of this book is to generalize these ideas and to study
many of their geometrical properties. In order to axiomatize the addi-
tion of vectors we introduce the concept of a group, and in order to
generalize the notion of scalar we define a general field. The reader who
is meeting these abstract ideas for the first time may find it helpful at the
beginning to replace the general field F in our definition of a vector
space by the familiar field R of real numbers and to accept the other
axioms a8 a minimum set of sensible rules which allow the usual manipu-
lations with vectors and scalars. The subsequent sections have more
geometric and algebraic motivation and are not likely to cause the same
difficulty.
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DermnrtioN. Let @ be a set together with a rule (called multiplica-
tion) which associates to any two elements a, b in G a further element ab
in @ (called the product of @ and b). If the following axioms are satisfied
then G is called a group:

G.1. (ab)e=a(bc) for all @, b, ¢ in G;

(.2. there exists a unique element 1 in G (called the identity) such
that al=1a=a for all a in G;

G.3. for each element a in @ there exists a unique element a~! in G

(called the inverse of a) such that e a~'=a"la=1.

A subset of G which is itself a group (with respect to the same rule of
multiplication as @) is called a subgroup of @. Note that, in particular,
@ is a subgroup of G and so also is {1}, called the trivial subgroup of G.

We shall see that the order of the elements a, b in the product @b is
important (see exercises 2, 3 below). This leads to a further definition.

DEFINITION. A group @ is commutative (or abelian) if
G.4. ab=baforalla,bin G.

It is only a‘matter of convenience to make use of the words “multipli-
cation”, “product”, “inverse” and ‘‘identity’”’ in the definition of a
group. Sometimes other terminologies and notations are more useful.
The most important alternative is to call the given rule “addition’’, and
to replace the product ab by the sum a+b, the identity 1 by the zero 0
and the inverse a =1 by the negative —~a (minus a). When this notation
and terminology is used we shall speak of G as a group with respect to
addition ; while if that of our original definition is employed we shall say
that G is a group with respect to multiplication.

The following are important examples of groups:

1. The integers Z form a commutative group with respect to addition.
The set Z* of non-zero integers, however, is not a group with respect to
multiplication.

2. The sets Q, R, €, F, are commutative groups with respect te
addition. The set of non-zero elements in each of these sets is & commuta-
tive group with respect to multiplication.

3. If 8 is the set of all points in three dimensional euclidean space,
then the rotations about the lines through a fixed point O of § may be
regarded as mappings of S into §. These rotations form a group with
respect to (mapping) multiplication. (The rigorous definitions of these
concepts will be given in Chapter VI.) '

4. The set of all permutations of a set 8 (i.e., all one—one mappings of
8 onto 8) is a group with respect to (mapping) multiplication.

DEerINtTION. Let F be a set together with rules of addition and mul-
tiplication which associate to any two elements z, ¥y in F a sum z+y
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and a product 2y, both in . Then F is called a field if the following
axioms are satisfied:

F.1. F is a commutative group with respect to addition;

F.2. the set F'*, obtained from ¥ by omitting the zero, is a commuta-
tive group with respect to multiplication;

F3. x(y+z)=ay+2z and (y+2)x=yx+2x for all x, y, zin F.

The fields that we shall mainly have in mind in this book are the
fields Q, R, C, F, listed in example 2 above.
We are now ready to define the basic object of our study.

DermNiTION. Let F be a given field and V a set together with rules
of addition and muitiplication which associate to any two elements a, b
in Vasuma+bin V, and to any two elements z in F, a in V a product
za in V. Then V is called a vector space over the field F if the following
axioms hold:

V.1. V is a commutative group with respect to addition;

V.2. 2(a+b)=za+ab,

V3. (z+yla=za+ya,

V.4. (zy)a=xz(ya),

V.5, la=a where 1 is the identity element of F,
forall z,yin F and all @, b in V.

We shall refer to the elements of V as vectors and the elements of F as
scalars. 'The only notational distinction we shall make between vectors
and scalars is to denote the zero elements of ¥ and F by 0y and 0, res-
pectively. Since 0, =0, for all z in F and 0za =0y, for all a in V (see
exercise 7 below) even this distinction will almost always be dropped
and 0y, 0, be written simply as 0.

The following examples show how ubiquitous vector spaces are in
mathematics. The first example is particularly important for our pur-
poses in this book.

I. Let F be a field and denote by F" the set of all n-tuples
(%1, ..., z,) where x,,..., ,€ F. We define the following rules of
addition and multiplication : ’

(xl"“’xn)+(y1!""yn) = (x1+3/1"‘ "xn+yn),
x(xlr "”xn) = (xxl:"':xxn)

forallz,z,,...,2,,%;,..., %, in F.

With these rules F* is a vector space over F.

2. If F is a subfield of a field E, then E can be regarded as a vector
space over F in the following way: ¥ is already a group with respect
to addition and we define the product of an element a of £ (a “vector”)
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by an element x of F (a ‘“‘scalar’) to be za, their ordinary product
as elements of E. It is important to note that the elements in F
now have two quite distinct parts to play: on the one hand, as ele-
ments of F, they are scalars; but on the other hand, as elements of the
containing field E, they are vectors.

We mention some special cases: F is always a vector space over F;
R is a vector space over Q; C is a vector space over R and also over Q.

3. The set F[X] of all polynomials in the indeterminate X with co-
efficients in the field F is a vector space over F.

4. The set of all Cauchy sequences with elements in Q is a vector
gpace over Q.

EXERCISES

1. Extend rule G.1 to show that parentheses are unnecessary in a product (or
sum) of any finite number of elements of a group.

2. Show that the rotation group of example 3 is not commutative.

3. Show that the permutation groups of example 4 are not commutative if §
contains more than two elements.

4. Show from the axioms that a field must contain at least two elements.
Write out the addition and multiplication tables for a field with just two
elements.

5. Let V be a vector space over the field . Show that any finite linear
combmatwn 218y + X8+ - -+ +x,8, =D 1.y 2@, where the x,’s are scalars
and the a,’s are vectors, can be written unambiguously without the use of
parentheses.

6. If a, b € V show that the equation v+b=a has a unique solution v in V.
This solution is denoted by a—b5.

7. Show that 0;a=0, for alla in ¥ and 20, =0, forall z in ¥. Show further
that (—l)a= —a foreveryain V. (For the first equation use (0p +0p)a =
Ora and exercise 6.)

1.3 Subspaces

DEFINITION. A subset M of a vector space V over F is called a sub-
space of V if M is a vector space over F in its own right, but with respect
to the same addition and sealar multiplication as V.

Observe that a vector space contains, by definition, a zero vector and
so a subspace can never be empty. In order to check that a (non-
empty) subset M is a subspace, we need only verify that if a, b e M and
xe F,then a+be M and zae M. (In verifying that M is a subgroup
of V with respect to addition we use the fact that (—1)a= —a.)
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Our definition clearly ensures that V is a subspace (of itself). At the
other extreme, the set {0,} is a subspace, called the zero subspace, and
we usually write this simply as 0. It is also clear that 0, is contained
in every subspace of V.

We shall base our construction of subspaces on the following simple
proposition.

Prorosition 1. The intersection of any family of subspaces of V is
again a subspace of V.

PROOF. Put M=MN(M,:ieI). Since 0, € M, for each i, M is not
empty. Ifa,be M and z € F, then a+b e M, and za € M, for each 1;
thusa+be M and zac M.

DeriniTION. If § is any set of vectors in ¥ then we-denote by [S] the
intersection of all the subspaces of ¥V which contain §. (There is
always at least one subspace containing S, namely V itself, and so this
intersection is defined.) The subspace [S] is the “least” subspace con-
taining 8, in the sense that if K is any subspace containing S, then K
contains [§]. We say that [S] is the subspace spanned (or generated)
by S.

This definition of [S] may be referred to as the definition ‘“from
above”. Provided that § is not empty there is an equivalent definition
“from below”: We form the set M of all (finite) linear combinations
Z8;+ + - - +,8, where z; € F and s;€ 8. It is immediately seen that
M is a subspace of V; that M contains §; and, in fact, that any sub-
space K of V which contains S must contain all of M. Hence M =[S].

It might be expected that the union of several subspaces of V would
be a subspace, but it is easily shown by means of examples that this is
not the case. We are thus led to the following definition.

DerinitioN. The sum (or join) of any family of subspaces is the sub-
space spanned by their union. In other words, the sum of the sub-
spaces M, (i € I) is the least subspace containing them all. The sum
is denoted by +(M,: i€ 1) or simply +(M,). The sum of subspaces
My, .. ., M, is usually written M, + M, + --- +M,.

Derivition. If M N N =0 we call M + N the direct sum of M and N,
and write it as M @ N. More generally, the sum of the subspaces
M, (¢ e€l) is direct, and written @(M,: ¢ € I) if, for each j in I, we
have +(M;:i1el,i # j)NM; = 0.

Note that the condition above on the subspaces M, is stronger than
the mere requirement that M, M M; = 0 for all i) (see exercise 7).
IfveM,® - @M, then v can be written uniquely in the form
v=m;+ - +m,, where mye M, fori=1,..., r.
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EXERCISES

1. If M is a subspace of V, show that the zero vector of M is the same as the
zero vector of V.

2. Show that the set of all polynomials f(X) in F[X] satisfying f(z,)=0
(i=1,...,r) for given z;,..., z, in F is a subspace of F[X]. Show that
the set of all polynomials of degree less than n (including the zero poly-
nomial) is a subspace of F[X].

3. If the mnelementse, (i=1,...,m;j=1,..., n) lie in a field F, show that
the set of all solutions (z;, ..., z,) in F" of the linear equations

Za‘,X,-=O G=1...,m)

. . 1=t
is & subspace of F*,

4. Give precise meaning to the statement that M N N is the “‘greatest” sub-
space of ¥ contained in both M and N.

5. Give an example of two subspaces of a vector space whose union is not a
subspace.

6. Prove that v € M + N if, and only if, v can be expressed in the form m+n
where me M, ne N; and

ve +(M;:iel) if, and only if, v=my 4 4my
for some 4, in I and m,, in M, (k=1,..., 1),

7. Consider the following subsets of F2: M, consists of all (z, 0, 0); M, con-
sists of all (0, z, 0); and M consists of all (z, z, y), where z, ye F. Show
that M,, M,, M are subspaces of F* which satisfy M, N M,=0 for all
1#j; that F3=M, 4+ M,+ M;; but that F? is not the direct sum of M,,

M, M,
8. Prove the last. statement made before these exercises.

9. If V is a vector space over F,, prove that every subgroup of V with
respect to addition is a subspace.

1.4 Dimension

The essentially geometrical character of a vector space will emerge as
we proceed. Our immediate task is to define the fundamental concept
of dimension; and we shall do this by using the even more primitive
notion of linear dependence.

Derivrrion. If 8 is a subset of a vector space V over a field F, then
we say that the vectors of S are linearly dependent if the zero vector of
V is a non-trivial linear combination of distinet vectors in 8;i.e., if there
exist scalars z,, ..., 2, in F, not all 0, and distinet vectors 8,...,81n
8 such that #;8,+ --- +z,8,=0. (In these circumstances we shall



