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PREFACE

In the 1960's, fluorescence spectroscopy became an important
tool for the physical biochemiét. Much- of the reason for this pop-
ularity was due to the sensitivity and versatility cf fluorescence
methods as well as to the pioneering theoretical and practical work
by investigators such as FOrster and Weber. The last decade has
seen an expanding interest in luminescence methods; indeed, we ap-
pear to be in.a period where the literature on fluorescence ig

growing exponentially.

Luminescence phenomena involve ground and excited states, and
the study of such phenomena may require different kinds of measure-
ments, such as fluorescence yield, degpy, polarization and spectral
distribution. While the complexity of‘luminescenqe should not dis-
courage investigators from using the technique, it is clear that
this is really not a single method but a collection of methods, each
of which has been developing as a result of the wide range of appli-

cability of luminescence spectroscopy.

There is obviously no point in trying to assemble a "text" on
fluorescence when the field is changing so rapidly, but there does
seem to be a need to recapitulate some of the concepts and applica-
tions of fluorescence on which future advances will be based. Much
understanding has already accumulated about the basis of fluores-
cence, polarization, energy transfer, quenching mechanisms, and
spectral shifts, and has given rise to many valuable studies on spe-
‘cific bioldgical systems. We now see further technical immovations
brought about by the advent of the digital computer, the laser, and
new electronic developments. A glance throﬁgh the table of contents
of this volume indicates that the area of decay kinetics has been

opened up by technical advances, especially time-correlated single
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photon methods and the associated computatjonal theory. Other new
techniques include circular polarization of luminescence, stopped-
flow fluorescence, fluorescence-monitored chemical relaxation, and
the evaluation of relative orientation by polarized excitation en-
ergy transfer.

Volume 2 will deal with some of the newer applications of flu-
orescence spectroscopy. New fluorescent probes and quenchers have
helped to open up areas such as membranes, muscle and nerve compo-

nents, and otker subcellular organelles.

Raymond F. Chen
Harold Edelhoch

National Institutes of Health
Bethesda, Maryland
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I. INTRODUCTION

The fluorescence polarization of dye solutions was discovered
by Weigert [1]. He found that polarization changes with the solvent
viscosity. This was an indication that the Brownian motion is an
important factor which affects the polarization.

The theory of the Brownian depolarization was given by F. Perrin
[2,5] for rigid molecules of spherical and ellipsoidal shape. In
In this theory, mathematical expressions are given which relate the
degree of polarization to the lifetime of the dye, to the molecular
volume (and to the axial ratio for ellipsoidal molecules), as well
as to the temperatufe and the viscosity of the solvent [4,5,6]. One
now prefers to use the emission anisotropy, introduced by Jablonsky
[7], instead of the degree of polarization. We will use the emission
anisotropy factor in this article.

The theory was first tested by Perrin [3] with chromophore
solutions h;ving different viscosities.' These experiments were done
with a steady excitation, and the quantities measured are what we
shall call the static parameters. Perrin took the volume found by
viscosity measurements [8] which enabled him to6 determine the life-
time of Yfluorescein which was in good agreement with the direct de-
termination of Gaviola [9}. Perrin's theory, however, does not
describe satisfactorily all the aspecfs of the experiments performed
with aromatic mglecules [10,11]. One of the reasons for this dis-
crepancy is probably that these molecules are too small to obey the
law of rotational Brownian motion.

On the basis of Perrin's theory, G. Weber [12,13] proposed a
. method for the determination of the morphological parameters of
macromolecules in solution. In this method a relaxation time is
obtained by measuring the static emission anisotropy at different
femperatures, or'in a series of solvents having different viscosities.
. This method has been applied to a variety of ﬁroteins, nucleic acids,
and membranes labeled with fluorescent chromophores. At first sight,
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‘one may think that macromolecules obey the laws of Brownian motion
‘fairly well (see reviews of Chen et al. [14] and Dandliker et al.
[15]). A critical analysis, however (Wahl [16], Wahl and Weber [17]),
shoﬁs that, in many cases, the variation of the temperature or of
the nature.of the solvent may influence the anisotropy in a compli-
cated way. Therefore a simple application of Perrin's formula is
not justified and might even lead to a wrong interpretation of the
o eipe?imentg [18]. '

— Q;PErrin's theory predicts that the decay of the principal po-
‘larized fluorescence components Iy and I, are influenced by the '
Biownian motion. As Jablonski [7,19,20,21] has pointed out, the
average lifetimes measured with ﬁ phase fluorometer are different
for the whole fluorescence and for each of the polarized components.
Coupling lifetime measurements in polarized light with measurements
of static anisotropy should permit the determination of the funda-
mental anisotropy and the volume of a spherical chromophore. These
data are obtained in a given solvent and at a given temperature.
Experiments performed by Szymanowski [22], Kessel (23], and recently
by Bauer [24] are in fair agreement with the prediction of Jablonski.

Spencer and Weber [25] have discussed in detail the use of the
phase fluorometer to obtain the Brownian correlation timeé and the
influenée of the modulation frequeney. Most of the present phase
fluorometers work at one or two modulation frequencies [26]. The
method might gain in value if the measurements were made in a large
continuous range of frequency. In the present state of the tech-
nique, the phase method is in many respects surpassed by the pulse
methods. Among these, the single photoelectron counting method
presents a set of advantages not found in other methods [27,28,29,
29a]. It is often possible with this method to follow the time
course of the emission anisotropy during an appreciable fraction of
the fluorescence decay and is currently being applied in the deter-
mination of correlation times in a number of biological compounds
[29a, 30, 30a]. The method may also be applied to the'study of

energy migration between a set of identical chromophores, [31,32].
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It is well known that energy transfer between identical molecules
decrease the static anisotropy [33,34,35]. Consequently, the decay
of anisotropy obtained after a flash excitation may be influenced by
energy migration. One must be aware of this possibility when inter-
preting such measurements, and it is necessary to separate Brownian
and transfer contributions [31]. A quantitative analysis of the
transfer contribution may bring about detailed information on the
spatial distribution of the chromophores. This principle has been
applied to the study of the ethidium-DNA complex [32,%6,36a]).

I shall first review the principle of the experimental determin-
ation of anisotropy decay. Then the theory of Brownian depolarization
will be discussed and its application to the study of macromolecules.
Finally,' some aspects of energy migration will be given.

II. EXPERIMENTAL DEFINITION OF THE EMISSION ANISOTROPY '
A. Définitions

The state of the fluorescence polarization may be characterized
by the three polarized components Ix, Iy, Iz. Their sum

S=Ix+1Iy + Iz ‘ . (1)

is proportional to the fluorescence flux radiated in all directions.
The excitation is due to the locdl electric field propagated by the
exciting light. Then, if the exciting light is polarized linearly
along 0Z, one has by symmetry
Ix = Iy (2)
If the exciting beam is made of natural light vibrating in the
X0Z plane, then

Iz = Ix . (3)
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By observing the fluorescence along OX, one sees

Iy = Iz I, = Iy )
&he anisotropy of emission [7] may be defined sas .

r =D/S (5)
with

D=1Iy -1, (6)

According to ﬁqs. (1-5), the emission anisotropy for a vertically
polarized exciting light is

Iy - I,

r = EE—:fEE: (7)

and for a natural exciting light

Iy - I,

nT 2Ty + 1, (8)

r
One may easil& show that between the emission anisotropy r and rn

one has the relation

The use of emission anisotropy instead of the degree of polarization
leads to simpler theoretical interpretations of the experiments.
These parameters are related to each other by simple expressions [7].

The emission anisotropy of a solution containing several molec-

ular species is given by the following expression {7;12]:

r = Erkfk (9)

where Ty is phe emission anisotropy of the species k, and fk = Sk/S
is the fractional fluorescence intensity of the species k. All these
definitions and expressions are valid for comtinuous excitation as
well as for an excitation by an infihitely short flash.
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B. Anisotropy Decay

" If the fluorescence is excited by an infinitely short flash,
the intensities Iy, I,, S, and D become time dependent. S is pro-
portional to the fluorescence decay and, in the simplest cases,

decays as a single exponential:

s = soe’t/T (10)

where T is tHe lifetime of the excited state.

‘The anisotropy decay will be defined as
r(t) = D(t)/s(t) (11)

These functions are not directly measurable in a pulse fluorometer
because the exciting flash is not infinitely short. One directly ‘
measures the experimental functions iy(t) and i,(t). ILet us.assume
that the exciting light is vertically polarized. Then one calcu-
lates [37,38]

d(t) = 14(t) - i, ()

(12)
iy (e) + 21, (¢)

s(t)

n

The functions D(t) and S(t) are related to these experimental func-
tions by the following convolution.integrals:

t
at) = j‘oD(t - T)g(T) ar

. (13)
s(t) = [ s(t - T)g(T) ar
0

where g(T) is the response function of the pulse fluorometer. This
function essentially depends on the exéitation function (time dis-
tribution of the intensity in the flash) and on the response func-
tion of the phptomultiplier. The determination of this function is
discussed elsewhere [27,28,29,38a]. The resolution of Eq. (135 is



