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EDITOR’S PREFACE

Approach your problems from the right end It isn’t that they can’t see the solution. It is
and begin with the answers. Then one day, that they can’t see the problem.
perhaps you will find the final question.

G.K. Chesterton. The Scandal of Father
‘The Hermit Clad in Crane Feathers’ in R. Brown “The point of a Pin’.
van Gulik’s The Chinese Maze Murders.

Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the “tree” of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought to be completely
disparate are suddenly seen to be related.

Further, the kind and level of sophistication of mathematics applied in various
sciences has changed drastically in recent years: measure theory is used (non-
trivially) in regional and theoretical economics; algebraic geometry interacts with
physics; the Minkowsky lemma, coding theory and the structure of water meet one
another in packing and covering theory; quantum fields, crystal defects and
mathematical programming profit from homotopy theory; Lie algebras are relevant
to filtering; and prediction and electrical engineering can use Stein spaces. And in
addition to this there are such new emerging subdisciplines as ”experimental
mathematics”, "CFD”, “completely integrable systems”, “chaos, synergetics and
large-scale order”, which are almost impossible to fit into the existing classification
schemes. They draw upon widely different sections of mathematics. This pro-
gramme, Mathematics and Its Applications, is devoted to new emerging
(sub)disciplines and to such (new) interrelations as exempla gratia:

- a central concept which plays an important role in several different mathematical
and/or scientific specialized areas;

- new applications of the results and ideas from one area of scientific endeavour
into another;

- influences which the results, problems and concepts of one field of enquiry have
and have had on the development of another.

The Mathematics and Its Applications programme tries to make available a careful
selection of books which fit the philosophy outlined above. With such books, which
are stimulating rather than definitive, intriguing rather than encyclopaedic, we hope
to contribute something towards better communication among the practitioners in
diversified fields.

Because of the wealth of scholarly research being undertaken in the Soviet
Union, Eastern Europe, and Japan, it was decided to devote special attention to the
work emanating from these particular regions. Thus it was decided to start three
regional series under the umbrella of the main MIA programme.
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viii EDITOR’S PREFACE

A long time ago it was certainly time that mechanics (both particle mechanics and
continuum mechanics) was a main source of mathematical problems and ideas. By
the first half of this century, however, the limits between the two areas of research
certainly had become rather tenuous. Also, a standard gap of some 50 years
between the developments of theory and applications had developed.

Now things have changed again. A period of gathering in the harvest of some 70
years of intense and often intensely specialised developments has started. Also, the
fifty-year gap is fast disappearing and has disappeared completely in some areas.
Continuum mechanics is one of the areas profiting from all this. There is also a
new awareness that the matter of ”what can one really do with all these beautiful
theoretical results and ideas” is an important part of research. This book testifies to
the fact that abstract results and techniques are useful and can be put to effective
use and are, given a good expositor, accessible to, in this case, engineers.

The unreasonable effectiveness of mathemat-
ics in science ...

Eugene Wigner
Well, if you know of a better ole, go to it.
Bruce Bairnsfather

What is now proved was once only ima-
gined.

William Blake

Bussum, July 1985

As long as algebra and geometry proceeded
along separate paths, their advance was slow
and their applications limited.

But when these sciences joined company
they drew from each other fresh vitality and
thenceforward marched on at a rapid pace
towards perfection.

Joseph Louis Lagrange.

Michiel Hazewinkel



INTRODUCTION

VARIATIONAL PRINCIPLES OF CONTINUUM
MECHANICS

In writing this monograph, I had to consider the
basic interplay between mathematics and mechanics.
In particular one has to answer some obvious ques-
tions in considering the development of a mathe-
matical theory which is primarily oriented towards
an applied science. A majority of engineers or
physicists would have given an obvious answer con-
cerning the role of mathematics. It is used for
solving problems. Modern physicists are not quite
so certain that this is a primary role of mathe-
matics, even of mathematical physics. First of
all, mathematics provides an abstract language in
which one can attempt to state precisely some
physical laws. Secondly, mathematics is used as a
source of physical concepts. I have always be-
lieved in the continued interplay of mathematical
and physical ideas. Important physical concepts
usually led in the past to an enrichment of the
mathematical ideas. Vice versa, a concept which
occurs naturally in diverse areas of mathematics
must have an important physical interpretation.

We seem to be witnessing a rebirth of the clas-
sical attitudes. The fundamental works of
Truesdell, Noll, Coleman, and Gurtin in continuum
mechanics; the works of Lichnerowicz and Hermann
in modern physics, and the unexpected application
of the Attiya-Singer index theory to quantum me-
chanics, the "rigorous" theories of Feynman inte-
gration-all point towards a new era of physical
interpretation of mathematical concepts. This
monograph attempts to contribute in a modest way
toward this general trend.

The author realizes how hard it is for an engi-
neer to absorb new mathematical ideas. At the
same time, more and more do the modern mathematical
ideas filter into the graduate courses of our

1



2 INTRODUCTION
engineering colleges. Just how much is to be
taken for granted is hard to decide. What suf-
ficed in the 1950-s is insufficient in the 1980-s.

As a compromise, some elementary concepts of
functional analysis have been included in the
Appendices A and B, Volume I, of this work. This
monograph covers only a narrow range of mathe-
matical material which is generally labeled
"variational methods” trying to bypass most of the
typical 19-th century arguments which are the
backbone of most "mathematical methods for ..."
expository materials and textbooks.

Volume 2 deals with related topics. Algebraic
approach (Lie group, Lie algebras), invariance
theory; modern theories of sensitivity; connection
with problems of control theory and optimization
theory.

It is impossible to treat all important aspects
of the interaction between physics, engineering
and mathematics even when we relate it exclusively
to the variational approaches.

The author selected some topics, omitted others
(perhaps even more important) and relied on some
mathematical developments, while at best paying
only a lip service to others. Some developments
in the theory of design optimization, sensitivity,
group theoretic and model theoretic methods grow
so fast that any research monograph is bound to be
slightly out of date by the time it is published.

The author has no intention of producing an
encyclopedic text, or trying to complete with such
texts, but concentrates specifically in Volume 1
of this work on the critical point theory and its
applications to continuum mechanics.



CHAPTER 1

ENERGY METHODS, CLASSICAL CALCULUS™QF vARPATIONS
APPROACH - SELECTED TOPICS AND APPLICATIONS

1.1 The Energy Methods. -- Some Engineering
Examples

The points of view of Hamilton, Lagrange, Gauss,
Hertz, and Lord Rayleigh emphasized the concept of
energy rather than force. The equations of motion
of the system are not derived by consideration of
equilibrium of forces acting on the system, pos-
sibly including the Newtonian and d'Alambert iner-
tia forces. Instead, the primary role is played
by energy considerations. As an example of such
an approach, a condition of stable equilibrium
under static loads is replaced by the condition of
a local minimum for the potential energy of a
mechanical system. Instead of solving the equa-
tions of motion of a vibrating system to find its
natural frequencies, it is possible to consider
the mean values of potential and kinetic energies,
or to minimize an appropriate energy functional.

It was Rayleigh who first discovered that in the

natural mode of vibration of an elastic system
the equal distribution of average kinetic and
potential energies caused the frequency of the
system to be minimized. Moreover, any other
assumed motion, satisfying the boundary conditions
(but not necessarily obeying any physical laws!)
will result in a higher value of the fundamental
frequency.

This type of a problem is traditionally "solved"
by techniques of classical analysis best illus-
trated by an example of a vibrating string fas-
tened at the ends. Let the string have length £,
mass density p (per unit length), and be subjected
to approximately constant tention T. One could
carry out the usual analysis based on Newton's
laws of motion to determine the equations of mo-
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4 CHAPTER 1

tion and the corresponding natural frequency. As
an exercise we shall carry out the details of a
heuristic analysis in the general form still of-
fered in many engineering texts.,

AX

Figure 1

We wish to find the deflection function y(x,t)
obeying boundary conditions:

y{o) 2 0, y{£}) = 0

These boundary conditions are independent of time.
At this point I will repeat a heuristic argument
found in many engineering texts, and one which I
have heard in my young days in the classroom. We
look through a magnifying glass at a small segment
of the string which now "locks almost like a seg-
ment of a line.” (Remark: We have just assumed
"spatial differentiability” of the displacement
function!)
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The force of gravity is ignored and we assume
that only the tension forces acting on the ends of
this segment "are of any importance." Balancing
the y components of forces (per unit length of the
string), we have

@
N

[T sina/As ] AKX (T sina/As] = o - Ax

Q>
ct

where = means "is approximately equal."

If o "is small" we substitute tan o = %% for

sin a, and use the mean value theorem for

73 a+ &2, ST @2y
x 4+ Ax X
Ax
to write:
32 3 oy 9y, 2
= (T & (1
Jove N ~1U LR r AR A

X < & < x + Ax, and observe that ¢ is guite
arbitrary. Then we assume that 1 + (%%)2 is "very

close to unity," and that "T is a constant func-
tion of x." Hence, putting T/p = c2, we finish by
writing the classical equation of the one-dimen-
sional wave propagation

@
N
I
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@
N
-

(1.1)
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describing the dynamic behavior of the string.

Now, let us look at our argument closely to
answer a simple question, "what kind of a (genuine
physical) string motion is really described by
this equation?" To realize what can possibly



6 CHAPTER 1

cause a string not to behave in a fashion which
fits into our equation, we should list all the
suspicious sounding statements which were quoted
in the inverted commas.

Now, assumming that everything is in order, we
proceed to separate variables by writing y(x,t) =
X(x) « 6(t). We suggest that the reader should
stop here and consider the physical implications
of writing y(x,t) = X(x) - 8(t). What are the
physical implications of this mathematical assump-
tion? These are certainly nontrivial. Let us
overlook this point, and simply assume that the
solution of the problem y(x,t) can be written in
the separated form

y(x,t) = X(x) - 8(t) (1.2)

It follows easily that

Xll (X) _ l e" (t) _ .
§T§T_ = T 5 constant;

We denote this constant by —A2. Then 6 (t) satis-
fies the equation

0" + W2 6 = 0 , where w = AC,

and 6 = Aosin (wt) solves it. w is interpreted as
the natural angular velocity. The constant AO is

the amplitude. The natural frequency is given by
f = w/2n.

A more sophisticated approach would consider the
average values of potential and kinetic energies.

Suppose that the string is vibrating with fre-
quency f, where w = 27f. Integrating over a com-
plete cycle of vibration gives a formula for _
average kinetic energy T and potential energy V.
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where E denotes Young's modulus.

We replace the constant tension assumption by
the equivalent assumption stating that the cross-
sectional area of the string is constant and
Young's modulus is constant.

bPenoting by <f, g> the L, (0,2 ] product, i.e.,
s

<f, g> = [ f£f(x) * g(x) dx, we rewrite the formula
o

for wl2 in this notation.

<AYq,Yq>
w 2_E il , where A stands for the
1 P <erYl>
operator:
_ @l
A = - 5 -
dx

According to Rayleigh's principle, the natural

mode yl(x) minimizes wlz. That is, among all

possible shapes n(x) which are physically admis-
sible, and satisfy n(0) = n{£)= 0, the natural

mode yl(x) minimizes wy®. Hence, wy® may be re-

garded as a functional depending on the shape and
distribution of weight of the vibrating string
ni(x), i.e., w12 = wl2 (n). One may investigate

this dependence and the sensitivity of Wy -
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If we know how to differentiate w 2 with respect

1
to n, the necess%ry condition for the minimum of
d(w,4)
2
wl becomes —Eﬁl—_ = 0. According to the rules of

Frechet differentiation given later in the Appen-
dix A,

d_
dn

2 d ,<An,n> 2 2 _
w = —— () = An - w =0
(wy = (n)) dn (<n,n> <n,n>( i 1

This is really the equation for the vibrating
system in its fundamental mode determining the
best design. The equation of motion is given by

d(wlz)/dy(x) = 0, where w is regarded as a func-

tion of the unknown displacement. That is, we
claim that the derivative of the Rayleigh quotient
with respect to y(x) is equal to zero.

It is interesting to observe that the entire
discussion considering equilibrium of forces act-
ing on the string has been bypassed, and replaced
by the simple-minded statement that the first
derivative must be equal to zero when a differen-
tiable function (functional) assumes a local mini=-
mum.

This is a deep observation contrasting the points
of view of Newton and Huygens, but also providing
an insight into modern viewpoint of classical and
continuum mechanics.

The important aspect of our simple example is
the replacement of analysis concerning vectors
(forces, displacements, etc.) by an analysis con-
cerning some extremal properties of a functional
(a function whose range is a subset of real or
complex numbers). Specifically, we differentiate
the enerqgy functional with respect to some vector.
In examples offered in this chapter, this is a
straightforward operation. However in some exam-—
ple discussed in later chapters concerning con-
tinuum mechanics, it is not clear what "differen-
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tiation" means or how to compute such abstract
derivatives. One needs some preparation in func-
tional analysis. Elementary concepts of func-
tional analysis as needed in critical point theory
are given in Appendices A and B of this volume of
the monograph.

First, let us illustrate the energy approach by
an elementary example of a direct application of
the energy method.

Consider a mass m attached to two points by

linear springs and subjected to the force of
gravity, as shown on Figure 3.

Figure 3

The spring constants are k,, k, as indicated.
Find the position of equilibrium.

Instead of attempting to balance the forces
and moments acting on the mass m, as_is done_ in
an elementary statics course, we shall use the
principle of minimum potential energy.

We choose coordinates x, y as indicated on
Figure 3 so that the force of gravity acts along
a line parallel to axis y. The potential energy
is given by

ve LK (x2+ y2)+}—'K [(d—§)2+ (§_/+c)2 71+ magy.
271 2 72
Note that y appears to be negative on the Figure
A-1; however the positive y-direction is downward.
There is no reason why the positive direction
should be up!
V attains a minimum only if
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§¥ = §¥ = 0, or §¥ =Kl§ - Kz(d—§)= 0
Ix 3y Ix
i‘l:K§+K(§+c)+mg=0

3y 1 2

Solving for x and Yy, we obtain the coordinates of
the equilibrium point.
_— sz __mg+ch
X=R VR Y TR TR,

1 2 1 2

We check that forces acting on the mass m are in
balance (i.e., their sum is equal to zero). Indeed
they are.

Somewhat similar problems can be regarded as
exercises.
1. Compute the equilibrium position of the mass

suspended as shown by three linear springs by
minimizing the potential energy of this system.

\ AL —_— e X
% K, §;
: K
K 7 3
1 : /

mng

Figure 4

(Observe that this problem is not statically
determinate!)
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mg
Figure 5

A mass is constrained to a circular path (as
shown). A linear spring attracts the mass towards
a point A with a > R. Find the equilibrium posi-
tion.

1.2 Examples From Structural Mechanics

The Theorems of Castigliano and Betti

Suppose that external forces are applied to a
structure which deflects elastically. The de-
flections are "small" and are linearly dependent
on the applied forces, i.e., if the forces ap-
plied are given by an n-vector, the m-dimensional
deflection vector is of the form

q = Af
where A is an m x n matrix. Let us assume Hooke's
law. Castigliano's theorem asserts that the de-
flection & in the direction of a force f; at the
point of application of that force is equal to the
derivative with respect to that force of the total
strain energy of the structure:

3U

§. = 22
i Bfi

This formula leads to direct computational results
based on approximate formulas for energy forms.

The approximate formulas for strain energy are
given below. The strain energy of a uniform elas-
tic bar in pure tension, or compression, is

- ¢ A

Figure 6
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P is the force.

A is the cross-sectional area.
E is Young's modulus.

£ is the length. '

For a pin-jointed structure containing n-mem-
bers, the analogous formula is

A, is the area of cross section of the i-th
member.
£. is the length of the i-th member.

S, is the force transmitted by the i~th member.

E is the Young's modulus.
For a single beam in bending, the strain energy
is
£

2
U= 1/c8) ; M)
O

I(x)

) dx

M(x) is the bending moment.
I(x) is the moment of inertia of the cross-
sectional area about the neutral axis.




