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PREFACE

" This book was the outgrowth of class notes I prepared over a period of several years for a
graduate course for students of mechanics and mathematics, and occasionally, physics, on non-
linear boundary-value problems in mechanics. The aim of the course was to present a sys-
tematic introduction to the matfematical foundations of the theory of nonlinear boundary-value
problems which focused on qualitative features of the subject, e.g., on questions of existence,
uniqueness, and regularity of solutions, and which approached this subject in a way accessible to
the student equipped with some graduate level mechanics and introductory functional analysis.
While the emphasis here is on qualitative properties of nonlinear problems, many of the basic
theorems are, to a great extent, constructive, 49 that the theory allows one not only to derive
useful information on nonlinear operators, but miso to identify in the proofs effective ways to
coastruct solutions. In particular; I have found the material collected here to be-extremely
valuable in developing approximation theories and computational methods for nonlmear prob-
lems in mechanics.

The book is divided into three major parts. Part I - Optimization Theory and Variational
Methods - contains treatments of convex and non-convex optimization, saddie point probiems,
duality, relaxation, and penalty methods, and some applications to contact problenis in eiastos-
tatics and finite elasticity. Part II - Nonlinear Operator Theory - provides an introduction to
monotone and pseudomonotone operators and variational inequalities (the treatment of this
latter topic being essentially a revision of my expository paper with N. Kikuchi on this subject
 which was published in the International Journal of Engineering Science, and I acknowledge
permissign of Pergamon Pregs to use portions of that work). Part III - Local Analysis - is a
brief introduction to degree theory, classical bifurcation theory and some generalizations to
problems of bifurcation from a simple eigenvalue, and a very brief look at nonlinear eigenvalue
problems. The overall scope of the book has been intentionally limited so as to provide
material for a one-semester course.

+_ During the writing of this beok, I have been fortunate to have had the help of many stu-
dents and colieagues in proofreading various versions of the notes. I wish to express special
thanks to Noboru Kikuchi, Luis de Campos and Leszek Demkowicz for reading portions of the
work and making helpful suggestions, to Phillip Ciarlet for his comments on a late draft of this
work, and to Ruth Dye for typing early versions of the notes. I also thank Ralph Showalter,
friend and colleague, who introduced me to several of the subjects dealt with here and who has
frequently shared with me his exceptional knowledge of differential equations and analysis.
Finally, I wish to register a special note of gratitude to Linda Calvin who so expertly and pro-
fessionally prepared the final copy of the manuscript for publication.

J. Tinsley Oden
Austin
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CHAPTER 1. PRELIMINARIES TO OPTIMIZATION THEORY

1. Introduction :

Thiroughout Chapter 1 of this monograph, we will be concerned with the classical optimi-
zation problem: Given a functional F defined on a subset K of a metric space V, find v in X
for which F(u) is the smallest possible value F can assume over all of K. The element u is
thus a minimizer of F on K. Of course, the functional F should be bounded below bn X for if
a lower bound doesn’t exist (inf F=—co) on the set K, then the minimization problem would
have little: meaning. Being bounded below, the infimum x4 = inf{ F(v) | v€ K} is finite, but, in
general, we cannot conclude that there actually exists a u€ K such that g = F(u). Our minim-
ization problem can thus be sgated as follows:

Find u€K such that F(u) - ing"‘F(v) BB Y

We will not be as much concerned with actually identifying the solution u of problem

(1.1) as with establishing conditions on F and K sufficient to guarantee that a solution exists.

These conditions are important pot only for determining if the problem itself is a meaningful

one but also in exposing other properties of the solutions when they exist and for designing

methods to calculate them. We sre also interested in the characterization of solutions to a1 -

" a subject which provides the connection between (1.1) and variational calculus. These ideds are

of great importance in the study of nonlinear partial differential equations and we will describe
concrete applications in later chapters. L

The famous theorem of Weierstrass provides a classic solution to problem (1.1): If Fis °
continuous on a compact subset K of ¥, then F achieves its minimum on K. These condi-
tions on F and K are far too strong for this resuit to be of much value in the solution of

interesting optimizatior# problems, We will develop extensions of this classical theorem in
which virtually all of its conditions are weakened. In place of real-valued fi onals, we will
frequently allow F to take on the value +9o; in place of continuity, we will the concept of -
{fower semicontinuity, and, when ¥ is a Banach space, we will consider cases in which X is only
weakly sequentially closed and F is weakly lower semicontinuous.  All of these terms are
defined explicitly in subsequent sections. Finally, we will consider cases in which no solution at
all exists to problem (1.1) but from which we can still extract useful information by construct-

ing, in a natural way, approximations to a.1).

Our aim in the present chapter is to lay down some essential mathematical preliminaries
to our study. Many of the ideas surveyed here are standard in optimization theory and addi-
tional details can be found elsewhere; in particular, see EKELAND and TEMAM [26] and
ROCKAFELLAR [74], and other referénces therein. '

2. Extended Real-Valued Functionals

Optimization theory can be considerably enriched by ailowing functionals defined on a
space V to take on the values teo. Thus, we will frequently consider minimization problems
in which F: V—R, where R = R |J {—o0} {J (+¢o} is the extended real line. :

There are several advantages to allowing infinite-valued functionals into our theory, at
least from the point of view of simplicity in the formulation of certain minimization problems.
For instance, if we are given a function Fo: K —R, we can always construct a new function F
according to

Fo(v) vek

which is defined on all of V. Thus,



inf o) = iﬁf FO»)

This means that, by allowing functions to assume the value +co, we make it necessary to con-
sider only functions defined everywhere on V. If X #g, then only the elements in X are
truly candidates for minimizers, whereas if X = @, then we can be certain that-the minimiza-
tion problem is infeasible.

Another way of expressing the problem of minimizing a functlonal Fi:V—R on a subset
K CV is to introduce the indicator ﬁmctmn ¥x for the set K:

0 ifvek . ‘
¥x (v) = +o0 if vEK 2.2)
Then we construct the functional F: ¥ — R given by - )

FO) = Fi(v) +yx(v), veV QY

and, again, seek minimizers of F throughout ail of V.

Of course, the use of devices such as (2.1) and (2.2) does not avoid the necessity of con-
i sldennc the constraint set K. However, many aspects of the problem dependm; on properties
~of F can be investigated at certain stages of the analysis without concentrating on details having
to do with K since the constraint is effectively built into the deﬁmtion of F.
The minimization of any extended real-valued functxonal F:V—R ns equivalent to the
problem of seeking minima in the effective domain of F

dom(F) = {v€V|F(») <+oo} - (2.4)

The constraints in any minimization problem are thus implicit in the reqmrement that
u€dom(F). Of course, if dom(F) = @ (i.e., F(v) = +o v€ V), then the minimization prob-
. lem is meaning@s. Also, if for some uedom(l") F(u) = —oo, then there cannot be a solu-
~tion to the minimization problem. There is, at least, some hope of solving a minimization
problem if we place some mild restrictions on F. For thls purpose, we shall say.that F: ¥ —R
is proper if and only if
@ it nowheré takes the value —oo and :
(i) F(v) & +o0; i.e. there exists at least’ one point 4 € ¥ at which F(u) < +eo.

We emphasize that an optimization problem may not have a solution even though
F(v) # —oo for any v. Conmdef the functional F: R—R defined by-

+c0 ifx <0

F(X) - {l/x ifx>0

Then infF (x) =0, but there is no point in dom(F) at which F(x) = 0.

3. Convex Sets, Hyperplanes, and Cones
. Let V be a linear vector space over R. If u and v are two pomts in V, then the set of
points

{weVIw-ou+(1—o)v 9€R, o<o(1} 3.1)

is called the lme segment between u and v, and u and v are called the endpoints of this line seg-
ment,.

Convex Set. A subset K C V is said to be convex if and only if it contains the line seg-
ment between any two of its elements.

It is easily verified that K C ¥V is convex if and only if the convex combination -of any
finite subset of elements uy, Uy, ..., 4, €K is in K; i.e. if and only if



i x,' u,-§K, A[ >0, i A]-l
i=1 . =1 ‘ ,
The entire space V is convex and, by convention, s0 is the empty set K=0. The intersection’
of convex sets is convex, but the union of convex sets is, in general, not coavex. O

If K is any subset of ¥, convex or not, the intersection of all convex sets containing X is
convex. It is called the convex hul of K and denoted co(k). ' :

" -

The nation of a convex set is the first of a large coliection of o absirastions

wisich are very useful in optimisation theory. For instarse, the set P of points v€ ¥ such that’ - .~

) . _ I(v) = X, AR .
where | is & noazero linear functional on ¥, is calietl an qne Ayperpiane and the sets
eV <A}, erlim >a

\r

are open half spaces bounded by P. The sets »
vev 110) <A}, vev | 10) 32}
are closed half spaces bounded by P. , | .

_ As another important example of geométrieal,notibns in snelysis, we mention the geometr-
ical form of the Hahn-Banath theorem. Recall that the analytical form of this theorem establishes
the following fact: v , . _

Let j denote a sublinear functional defined on a real tdpological vector apace V (G.e.,
J:¥V—Ris sch that g o ‘
~ J(v) = Aj(v), A€R, A 30, and Jutv) € JW) + i)
‘and let / denote a linear functional defined ona Iineqvnm M of V, such that
Iv) € JOv) VveM.
Then there exists a linear functional L defined on sll of ¥, such that
@ L is an extension of / Gie., L(») = 1(v) ¥v€M) and ~ .
i) LO) €jv) ¥veV. ) , ,
To construct a geometrical version of this résuit, we note that any nonempty convex set

Kwnuinim&doﬁ;inOmbewmplemlyMﬂedbylmddmwfmcﬁmﬂmx
calledtheMinkowskifnncﬁomlofKinV:ﬂddeﬁMW : ' ,

g (v) = inflr [Alvek, A > 0}
One can show, in fact, that ’
Vo 0< my (v) < 400 and my is sublinear
and, moreover, that ’
K = [veVim®) € 1}; intK - {veV | mxg() <1}
With this characterization of convex K in mind, consider an affine subsbaoe MoV .
which does not intersect K and suppose K is open. Since 0€M, by an appropriate scaling we

can characterize M by the hyperplane {veV | 1(v) =1} where ! is a real linear functional -
defined on a linear subspace of V. But if veintk, then my (v) 3 1; hence - ‘

1) = 1 €< mxg(y) vEM
By the Hahn-Banach theorem, there exists an extension L of / to all of ¥, such that -



LO) = 10) < mgO), veM =
and
L) € mg(v) forall veV

But, by appropriate scaling, L defines the affine hyperplane P'= {ve ¥ | L (v) & 1) which con-
tains the hyperplane M = {ve W |/(v) = 1} (W being the subspece on which / is defined) and
which, by construction, does not intersect int X. Finally, we note: that these same arguments
apply to any nonempty convex set KC V since we can always assume thal 0€X after an
appropriate translation. ' ,
We summarize these obsetvations in the following basic theorem:
Theorem 3.1 (The Geometrical Revay of the Hahn-Banach Theorém). Let ¥ be a real topo-
*ogical vector space. Let K be an open nonempty convex subset of ¥ and M a nonempty
affine subspace of ¥ which does not intersect X. Then there exists a closed affine hyper-
‘plane P which contains M and does not intersect X. O

. The importance of these idoas for our immediate purposes lies in an important corollary to the
above theorem on the separation of convex sets. i

Corollary 3.1.1. () If X and M are disjoint, nonempty, convex subsets of a real topolog-

ical vector space ¥ and if K is open, then there exists an affine hyperplane P which

sepql)ttes‘l( and M (ie., P is such that X and M lie in opposite gpen half spaces defined
by P). . . f -

- (i) If V is locally convex (i.e. if there exists a fundamental system of convex neighbor-
hoods of the origin of ¥) and if X is convex and closed and M is convex and compact,

K and M disjoint, then there exists an affine hyperplane P which strictly separates X and

M (i.c. P separates K and M and the points of P are not in K or M).. 0

From these results it also follows that for any convex subset X of a réal topological vector
space ¥ which contains interior points, and any point u which is not an interior point of X,
there exists a closed affine hyperplane P which contains u and which is such that X is com-
pletely contained in one of the closed spaces determined by P. ¥ u€K, then we say that
P is a supporting hyperplane of K and thatla\is a supporting point of K (see Fig. 3.1).

One consequence of these results t in locally convex Hausdorff topological spaces,
we are guaranteed the existence of nonzet‘d‘ ntinuous linear functionals on ¥. In particular, if
u and w are distinct points of ¥, the H‘hf -Banach theorem (or Corollary 3.1.1) allows us to
separate them by a closed affine h‘yperplanf , P:l(v) = . The nonzero linear form / is con-
ﬁnuoW@ P is closed and /(u) » {{w). Thus, there exist nonzero continuous linear
functio: on V. The space ¥* of all cqntinuous linear functionals on V is the t logical
dual of V. Thus, if v*€V*, its value v*(v) at a point v in V¥ is a real number which depends
linearly and continuously on v. Conversely, for fixed v, v* () defines a linear functional on
Ve, 'I‘g emphasize this symmetry in the roles of ¥ and ¥*, we use the notation

\\ . N Vi) = <y > \
'Ihus,"\“<-,-> ‘: V* x V —R. Every affine hyperplane on such a space is, thus, reisresentable in
the form . - \
) <vhw> =\, v*EV* A € Ri\‘ (3.2

L) = <> 4 | (.9)

and every aﬁnﬁﬁptimmu\s fﬁnctional- : ¥V — R is of the form
\ \
N

with AER, v¥e V*, \ »
Cones. Another \important geometrical concept is the notion of a cone in a linear vector
space V. A subset C of a linear vector space is a cone if and only if A\CCC forA > 0; Cisa






cone with vertex at the origin if and only if u€C implies Au€C for A > 0. A cone with vertei
ug€ V is defined as the translation ug+ C of a cone C with vertex at the origin. We note that
any linear subspace of ¥ and any translated linear subspace of ¥ is a cone.

A cone C of a linear vector space ¥ or R is said to be proper if and only if

() C is acone with vertex at the origin

(ii) C is convex

For such cones, we shall also assume that C () —C = {0}. ‘
The importance of a proper cone in V is that it permits us to introduce an ordering on

elements of the linear space V. In particular, if C is a proper cone in ¥, we introduce a rela-
tion R on V defined by

uRvy <> u-veC

The relation R is reflexive (u—u = 0€ C), antisymmetric (uRv and vRy => v = u), and tran-
sitive  (since C is convex, wu;u€C=> uy+u€C; hence, uRv and

WRw => ((u—v) + (v—w)) € C => uRw). Thus, R is a total ordering on ¥ and we use the

conventional notation > to describe R; i.e.
) Uuz2y<=>y—yeC (3.4)

‘We refer to C as the positive cone in ¥V corresponding to the ordering >. Likewise, the cone
C~ = —C is the negative cone in V and we write

Uy <=>yu-veC 3.5)

it is evident that the specification of a positive cone in V makesvit possible to add to the
purely iinear structure of ¥V inequalities such as u > 0, u < 0, etc. In particular, the partial
ordering (3.4) is said to be compatible with the structure of a linear space since

“u20=>Au20 ¥rA>0 (3.6)
UZSZVv=>u+w2v+w ¥wev .

Conversely, when an ordering > is defined on ¥ satisfying (3.6), ¥ becomes an ordered vector
space and the set C = {v |v > 0) is the positive cone in ¥ corresponding to the ordering > it
is a proper cone in V. _ '

If V is normed linear space with-positive cone C, a corresponding positive cone C* can
be defined in the dual space ¥* by

C* = (u*eV* | <u*v>20 ¥ve() 3.7

It is not difficult to show that C* is closed even if C is not. If C is closed, then C and C* are
related as follows: ¢
Theorem 3.2. Let a positive cone C in a normed linear space V be closed. If veV is
such that P A o

<u*v> >0 ¥uecC
then
v20

Proof: Assume ukC, C closed, but <¥*,u> > 0, u*€C*. Then, by Corollary 3.1.1 (ii),
there is a hyperplAne strictly separating ¥ and C (since C is convex); i.e. there is a
u*€ V* such that <u*.u> < <u*,v> for all ve€C. 'Since C is a cone, <u*,v> cannot
be negative, bedause then <w*\v> < <u*,5> for some A > 0. Therefore, u*€C*.
Finally, since inf {<4*,v> |v€C} = 0, we must have <u*,u> < 0. O

: The set C*C V* is a positive cone in ¥*; it is a proper cone and, therefore, defines an

ordering € on¥* according o

L \\‘

\

- = a



ut > vt <=> u*—v*eC* ' ’ 3.8)

4. Convex Functionals
Let F.V— R denote a functional defined on a linear vector space V. We recall that the
graph of F is the subset of V x R defined by o

graph F = {(v,\) € ¥ x BRIa=FW) ()

the set of points above the graph of F is called the epigraphof F a_nd is denoted epi F:
epi F={((yA) € VxR 3 FO) 4:2)

Convex Functional. A functional F: ¥ — R is said to be convex if and only if its epigraph
is convex. O R 7 : _
~The fact that this definition coincides with our ususl notion of & convex function is esta-

blished in the following theorem: . , .
. Theorem 4:1. Let K be a nonempty ‘convex subset of a linear vector space V and let
F:K— R be a functional defined on K. Then F is convex if and only if, for every u
and v in K,
FOu + (1<8)v) € 0F(u) + (1-0) F(¥) @.3)

for all 0€R satisfying 0 < 6 < 1, whenever the right-hand side is defined.
Proof: Suppose (4.3) holds and (u,\) and (v,u) are in epi F. Then F(u) < A < +o0 and
F(v) € p < +oo, by definition. Therefore, for any 0€ 0,1},

FOu + 1-0)v) € 0F(w) + (1-0) F(») < 6\ + (1-0)u

But this means that 0(u,A) + (1—0)(v,u) €epi F; i.e. epi F is convex.

' Conversely, suppose that epi F is convex. For u,v€dom(F), let A > F (u) and
p » F(v). By the convexity of epi F, 0(ux) + (1—-8) (v,u) €epi F for any 9€l0,1].
Hence, .

FOu+ 1—0)v) < ox + 1-0u

If F(x) and F(v) are finite, we may take A = F(u) and p = F(v) to obtain 43). If
either F(u) or F(v) = —oo, we allow A and u to tend to —co to obtain (4.3). O
If the strict inequality (<) in (4.3) holds, we say that F is strictly convex. If - F is con-
vex, we say that F is concave.
The following properties of convex functionals are easily verified:
G KEV— R is convex, then A F is convex, AER, provided A- > 0.
@) If F:v—Risconvexand G: v — B is convex, then F + G is-convex.
) Let F = {F)}s be a family of convex functions from ¥ into R. Then their pointwise :
supremum F, where F(v) = sup F(v) ¥ v€ V, is convex. o

Gv) If, in a neighborhood N(ug of a point up€ ¥, a convex function F is bounded above
by a positive finite constant, then F is continuous at to : _
Note that €i) holds with the convention that (F+G)(v) = 40 if F(v) = ~G(v) = 400,
Note that (i) infers that the set C(¥) of all convex functions on V' is a cqnvex cone with ver-
tex at the origin. For introductions to these related ideas, see LUENBERGER [56] or EKE-
LAND and TEMAM {26}, . ~

’



5. Limits Superior and Inferior

Because of their importance in subsequent discussions, we will review briefly the concepts
of limit superior and limit inferior of a sequence of real (or extended real) numbers.

We recall that the elementary notion of the convergence of a sequence {x,} of real
numbers to a limit x* describes the situation in which, for any given €-neighborhood of x*,
there is a positive integer N such that each X, is in this neighborhood for all # > N. Thus, if
x* = lim x,, then, for any given ¢ > 0, all but a finite number of terms of the sequence are

n—oo

within € of x*. This also means that if {x,} converges to x* there are infinitely many terms
within a distance e of x*.

The converse of this last statement is false. For given € > 0, a sequence {x,} may have
infinitely many terms such that |x,—x*| < e, but {x,} may not necessarily converge to x* (the
key issue is the existence of an N such that |x,—x*| < € for all n > N). For instance, the
divergent sequence x, = (—1)” has an infinite number of entries in any neighborhood of 1 and
-1. In such cases, we say that x* is a cluster point of the sequence {x,); i.e., x* is a cluster point
of {x,} if and only if, for given € > 0 and given N , there exist # > N such that |x,—x*| < e.
It is clear that much weaker requirements are needed for a sequence to have cluster points than
a limit; every convergent sequence has a cluster point x* which is precisely the limit of the
sequence, but a divergent sequence may have more than one cluster point.

With these observations, we have all of the ingredients necessary to formulate a generali-
zation of the concept of convergence of sequences which reduces to the usual notions whenever
a sequence actually has a limit. The idea is simple: if {x,} is a sequence, possibly divergent,
which has cluster points, we refer to the largest cluster point of {x,} as the limit superior of {x,)},
denoted lim sup x,, (or lim sup x, or im x,) and the smallest cluster point as the limit inferior

n=—+00

of {x,}, denoted lim inf x, (or lim inf x, or lim x,). More specifically, if {x,) is a sequence of
N=+00

real numbers, its limit superior is defined by

lim sup x, = n’}f SUp %, ¢.1)
and its limit inferior by
lim inf x, = sup "lg!’; Xy (5.2)

Alternatively, x* is the limit superior of {x,} if and only if -
(i)  For every e > 0, there exist natural numbers N such that
X, < x*+e (5.3a)

forall n > N, and
(ii) For given € > 0 and N, there exist # > N such that

X, > x*—¢€ (5.3v)

Analogous properties hold for the limit inferior of {x,}.

There are other ways to interpret the limits superior and inferior of sequences which help
clarify these concepts. We record some of these in the following theorem.

Theorem 5.1. Let {x,} be a sequence of real numbers which is bounded. Then the fol-
lowing are equivalent: ‘

@ x* = lim sup x,
(i)  If y, = suplx, | n > m), then x* = infly,, | m > 1).
(iii)  If y, = sup {x, | n > m}, then x* = lim y,,.

=00
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