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[]ZW Z][] PREFACE

Industry reports show that COBOL is the most used language for business adminis-
trative programs. As a result, a good foundation of the language is needed by a
potential programmer in data processing. To help lay this foundation, the authors
present the material in this text using a modular approach: They start with the
very basic concepts and skills needed, and progress into more difficult concepts.
Using this approach, an individual quickly gains confidence in the language and
develops good programming techniques.

Chapter 1 is an introduction to hardware and software concepts, and chapter
2 is an early exposure to the structured design of programs. Top-down design is
stressed, along with programming structures and structure charts. Chapters 3 and
4 cover the basic components of the COBOL language and how to use standard
COBOL formats for an easier understanding of the syntax of the language. In chapter
5, all of the concepts from previous chapters are brought together, and a complete
program is discussed from the statement of the problem to the analysis of its output.

Because correcting program errors is an important part of COBOL, chapter 6
covers how to avoid or minimize them, how to use the error detection statements
of the language for debugging statements, and how to understand the diagnostics
of the language. Chapter 7 builds on the program concepts from earlier chapters
and discusses the editing of output data. Chapter 8 brings arithmetic into the program
solution. In chapter 9, flowcharts are used to more clearly explain the logical se-
quence and control of decision making statements. The validation of input data is
discussed and applied in a program in chapter 10. One, two, and three level control
breaks are presented, using simplified techniques in chapter 11; chapter 12 explains
how to use sorting techniques. The difficult topic of table use is presented in a
straightforward fashion in chapter 13. Chapter 14 deals with tape and disk file
processing. Chapter 15 is a collection of additional topics that are brought together
at the end of the text.

Another feature of the text is a section on programming style and on common
errors encountered when using the topics in that chapter. Also, chapters 4 through
14 each use complete program examples to cover the new material. Each program
has: a statement of the problem; an explanation of the data input and output; a
complete program listing; and a discussion of the program logic. Documentation is
covered with structure and printer spacing charts. In addition, the authors have
implemented a self-documenting technique for numbering and naming procedures
used in a program.

The text can be used in a variety of ways. Chapters 6, 10, and 12 can be skipped
or used in a different order; they are each independent of other chapters. Chapter
15 can be drawn upon from any of the chapters, as needed, or omitted. An institution
using one term to teach COBOL will find the coverage of COBOL topics in the
text more than ample for its needs. Those institutions using two terms to teach
COBOL will find that this text covers all of the topics necessary for the first term
and has topics remaining. Therefore, it is easy to dovetail these topics with those
in a second term. A different text can be used for the second course with the
assurance that the student has been exposed to all of the topics necessary; or
you may use the authors’ sequel to this text: ANSI Structured COBOL: Advanced,
by the same authors. The advanced text is written with the same general format
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TERMS AND
STATEMENTS

Introduction to
Programming

.

COBOL is an industry language rather than one developed by a specific com-
puter vendor. It has gone through many revisions, with the industry primarily using
the standards published by the American National Standards Institute (ANSI) in
1968 and 1974. Though revisions are currently under consideration, it may be some
time before another version becomes standard. This text assumes the use of the
1974 standards.

COBOL is a file processing language that was developed and has been used
primarily as a batch processing language. However, it is also adaptable for interac-
tive applications.

Throughout the text many new terms and COBOL statements are introduced. It is
a helpful reminder to list all of these terms and statements so that the student
can see at a glance important new concepts that are covered. These terms are
boldfaced when they are explained. The following terms are introduced in this
chapter:




2 Chapter 1

COBOL History

COBOL is a unique computer language in that it was developed by the computer
industry rather than by any one computer vendor. The beginnings of COBOL can
be traced to the U.S. Department of Defense. The defense department was having
difficulties working with the many different computers and computer languages pur-
chased and used by their defense contractors. Because of the need for each contractor
to provide contract costs, progress of the contract, and so forth, the defense depart-
ment was perplexed by the monumental task of auditing the results from each
defense contractor.

The Committee on Data Systems Languages (CODASYL) was created in 1959
to consider the possible development of a single computer language that would
be useful for administrative applications. The defense department reasoned that
if all defense contractors were using the same computer language, then the problem’s
magnitude would be lessened. CODASYL was comprised of computer users, defense
department representatives, computer manufacturers, and others. The results were
released in April 1960 and became known as COBOL (Common Business Oriented
Language). COBOL was developed to be (1) standardized, (2) self-documenting,
and (3) useful primarily for administrative applications.

Revisions were made in 1963 and 1965 by CODASYL, and numerous revisions
were made by individual computer vendors with concomitant decreases in standardi-
zation. In 1968 the American National Standards Institute (ANSI) prepared sugges-
tions for better standardization. Current ANSI standard COBOL compilers use either
the 1968 or the more current 1974 ANSI standards. ANSI is currently considering
a new COBOL standard, but has not yet obtained agreement within the computer
community as to what the new standards should be.

COBOL has become an extremely important language for administrative applica-
tions. There are literally millions of COBOL programs being used and continually
modified. COBOL programming skills are expected to be needed well into the future
because of the investment that firms have made in existing COBOL code. Notwith-
standing what one might hear about database systems and fourth-generation com-
puter languages, large and medium-size companies continue to recrnit programmers
who are competent in COBOL. Most microcomputer vendors now offer COBOL
compilers, and the industry is seeing more and more application packages that
are available in COBOL on smaller and smaller computers. COBOL is not dead:;
it seems to be thriving on an idea that is now over a quarter of a century old.
Those who intend to make a career of designing administrative computer systems
should make every effort to learn COBOL, and learn it well. It may be their ticket
to a successful career in information processing.

Hardware Concepts

No matter what kind of computer or what kinds of programming languages are
being used, the programmer must consider some hardware and software concepts.
The understanding of these concepts is essential in getting the computer to accom-
plish a task. The concepts are all relatively simple, but necessary to understand
before the user begins to look at the COBOL programming language.

In any computer system, from the smallest personal computer to the largest
mainframe computer, there are four hardware components in almost any given appli-
cation. These components are depicted in Figure 1-1. The four major components
are input devices, the central processing unit (CPU), output devices, and auxiliary
or permanent storage devices. The purpose of any input device is to send data
and/or programs to the CPU to be processed or stored in the computer system.
Similarly, the output devices receive the data and/or programs sent to them from
the CPU. Auxiliary storage devices accept data from the CPU for more or less
permanent storage of data and/or programs. All auxiliary storage devices are actu-
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Figuré 1-1 Hardware Components of a Computer System
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The several functions of the CPU are served by three major units, the control section,
the arithmetic/logic unit, and primary or main storage.

The control section acts as the supervisor for the entire computer system, directing
the activities of the CPU and the activities of all input and output devices, including
auxiliary storage. Examples of activities controlled are the' movement of data and/
or programs from an input device into memory, movement of data and/or programs
between auxiliary storage and primary storage, and movement of data to an output
device.

The arithmetic/logic unit performs all mathematical functions, such as multiplication
and rounding; it also gives the computer its logic capabilities, such as comparing
two different values, checking the validity of the data as they are being transferred
from one location to another, or allowing a program to be executed in a different
sequence, enabling the programmer to change the way the program operates.

Primary storage, also called memory, allows the storage of data and programs that
can be immediately accessed by the computer system. Primary storage is considered
temporary because of the volatile media used to store data and programs in the
CPU. Volatility means that the stored data gets lost unless stored on a more perma-
nent device. To illustrate this point, consider what happens when a hand-held calcu-
lator is turned off; all values, except those placed in a memory register, are lost.
Primary storage is the same; if the computer is turned off, all data is lost. Additionally,
other programs need the space as soon as one program has completed its tasks.
A subsequent program overlays previously used storage locations in memory when
it needs to use the locations. This overlay process has considerable importance
later as the COBOL statements that manipulate data in primary storage are devel-
oped.



