ANSI

STRUCTURED
COBOL

An Introduction

Steve Teglovic, Jr.
Kenneth D. Douglas

ANSI
STRUCTURED
COBOL

An Introduction

Steve Teglovig, Jr.
University of Northern Colorado

Kenneth D. Douglas

Southwest Missouri State University

THE ASN FORIHDATION

BLONNEOIBASIA
SAN FRANCISCO, CALIFCRIIA, US.A

E N R W |

1986
IRWIN

Homewood, Illinois 60430

© RICHARD D. IRWIN, INC., 1986

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

ISBN 0-256-03286-6

Library of Congress Catalog Card No. 85-60949

Printed in the United States of America
1234567890ML32109876

[]ZW Z][] PREFACE

Industry reports show that COBOL is the most used language for business adminis-
trative programs. As a result, a good foundation of the language is needed by a
potential programmer in data processing. To help lay this foundation, the authors
present the material in this text using a modular approach: They start with the
very basic concepts and skills needed, and progress into more difficult concepts.
Using this approach, an individual quickly gains confidence in the language and
develops good programming techniques.

Chapter 1 is an introduction to hardware and software concepts, and chapter
2 is an early exposure to the structured design of programs. Top-down design is
stressed, along with programming structures and structure charts. Chapters 3 and
4 cover the basic components of the COBOL language and how to use standard
COBOL formats for an easier understanding of the syntax of the language. In chapter
5, all of the concepts from previous chapters are brought together, and a complete
program is discussed from the statement of the problem to the analysis of its output.

Because correcting program errors is an important part of COBOL, chapter 6
covers how to avoid or minimize them, how to use the error detection statements
of the language for debugging statements, and how to understand the diagnostics
of the language. Chapter 7 builds on the program concepts from earlier chapters
and discusses the editing of output data. Chapter 8 brings arithmetic into the program
solution. In chapter 9, flowcharts are used to more clearly explain the logical se-
quence and control of decision making statements. The validation of input data is
discussed and applied in a program in chapter 10. One, two, and three level control
breaks are presented, using simplified techniques in chapter 11; chapter 12 explains
how to use sorting techniques. The difficult topic of table use is presented in a
straightforward fashion in chapter 13. Chapter 14 deals with tape and disk file
processing. Chapter 15 is a collection of additional topics that are brought together
at the end of the text.

Another feature of the text is a section on programming style and on common
errors encountered when using the topics in that chapter. Also, chapters 4 through
14 each use complete program examples to cover the new material. Each program
has: a statement of the problem; an explanation of the data input and output; a
complete program listing; and a discussion of the program logic. Documentation is
covered with structure and printer spacing charts. In addition, the authors have
implemented a self-documenting technique for numbering and naming procedures
used in a program.

The text can be used in a variety of ways. Chapters 6, 10, and 12 can be skipped
or used in a different order; they are each independent of other chapters. Chapter
15 can be drawn upon from any of the chapters, as needed, or omitted. An institution
using one term to teach COBOL will find the coverage of COBOL topics in the
text more than ample for its needs. Those institutions using two terms to teach
COBOL will find that this text covers all of the topics necessary for the first term
and has topics remaining. Therefore, it is easy to dovetail these topics with those
in a second term. A different text can be used for the second course with the
assurance that the student has been exposed to all of the topics necessary; or
you may use the authors’ sequel to this text: ANSI Structured COBOL: Advanced,
by the same authors. The advanced text is written with the same general format

vii

)
viu

Acknowledgment

Preface

and style and completely covers all topics necessary to master the COBOL language.

The Appendixes in this text provide complete data sets of all chapter programs
and problem assignments, coverage of COBOL language formats and reserved words,
and explain the uses of line and full screen editors for creating programs and data
sets. In addition, there are answers to selected exercises from each chapter.

An instructor’s manual is available with the text. It has solutions to all of the
exercises in the text and a bank of objective questions and executed programs
with output results for all chapter problems. There are copies of many of the Figures
and Programs in the text that can be used as transparencies. The manual saves
many hours of programming and preparation time.

The authors wish to express their sincere gratitude to the manuscript reviewers
for their comments, suggestions, corrections and constructive criticisms:

Susan D. Haugen

Drake University

Mick L. Watterson

Drake University

Harry Sullivan

Columbus Technical Institute
Jeane A. Schildberg

Chaffey College

Bennett L. Kramer

Massasoit Community College

Bruce M. Johnson, Jr.

Xavier University

Douglas May

Appalachian State University

John A. Morris

Lincoln Land Community College
Edward Stone

Herkimer County Community College
Judy Adamski

Grand Valley State College

Finally, we want to express our sincere gratitude to members of our families
for their encouragement during the long writing process. Special thanks and love
go to our wives, Mary and Cecil, for their tolerance of our behavior and for their
understanding, support, and contributions to our efforts. What would we do without
them!

The acknowledgment required by the American National Standards Institute for
the use of copyrighted material follows:

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations,

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning
of the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection herewith.

Preface ix

The authors and copyright holders of the copyrighted material used herein
FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F28-8013, copyrighted
1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honey-
well

have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programming manuals or similar publications.

Steve Teglovic, Jr.
Kenneth D. Douglas

il

CONTENTS

Chapter 1

Introduction to Programming

Chapter 2

Terms and Statements 1
Cobol Histery 2
Hardware Concepts 2
Central Processing Unit 3
Input, Output, and Auxiliary Storage Devices 4
Software Concepts 6
Batch and Interactive Processing 7
Program Execution 8
Program Development 8
Exercises 9

Structured Design of Programs

11

Chapter 3

Terms and Statements 11
Need for Structured Design 12
Programming Structures 13
Top-Down Design 14
Use of Structured Tools 14
Visual Table of Contents 14
Pseudocode 17
IPO Charts 17
Structured Flowcharts 19
Warnier-Orr Diagram 20
Chapin Charts 20
Nassi-Shneiderman 20
Common Errors 20
Problems 22

Components of a COBOL Program 23

Terms and Statements 23

Use of COBOL Coding Form 24
Identification and Instruction 24
Page and Line Number 24
Comments, Continuation, and Skipping 25
COBOL Headings and Statements 25
Program ldentification 25
Program Coding 25

Standard COBOL Format Notation 26

xif Contents

Chapter 4

Structure of COBOL 26
Data Organization 27
Level Indicators and Numbers 29
Words and Names 29
Literals 30
Figurative Constants 32
Symbols 32

Common Errors 33

Exercises 33

Problems 34

Program, Devices, and Data Definition

36

Chapter 5

Terms and Statements 36
IDENTIFICATION Division 37
Required Entries 37
Optional Entries 38
ENVIRONMENT Division 39
CONFIGURATION Section 39
INPUT-OUTPUT Section 40
DATA Division 41

FILE Section 41
WORKING-STORAGE Section 46
Program Example 50
Statement of the Problem 50
Input 51

Output 51

Program 51

Discussion 53

Programming Style 53
Common Errors 54

Exercises 54

Problems 55

PROCEDURE Division

28

Terms and Statements 58
PROCEDURE Division 59
General Entries 59
Statement Entries 59

Program Example 74
Statement of the Problem 74
Input 74
Qutput 74
Structure Chart 74
Program 7%
Discussion 77

Programming Style 77

Common Errors 78

Exercises 78

Problems 79

Contents xiif
Chapter 6 Debugging and Diagnostics 81
Terms and Statements 81
Program Compilation 82
Types of Errors 82
Error Correction 82
Desk Check 82
The DISPLAY Statement 83
The EXHIBIT Statement 83
The TRACE Statement 87
The Debugging Module 89
Diagnostics 93
Structured Programming 98
Chapter 7 Headings and Edited Oulput 99

Terms and Statements 99
Data Movement 100
Overpunched Code for Signed Numeric Input Fields 100
The SIGN Clause 100
Moving Decimal Numeric Literals 101
Absolute and Algebraic Values 102
The JUSTIFIED RIGHT Clause 102
The Figurative Constant ALL 103
Time and Date from the CPU 104
READ Statement with INTO Option 105
Output Editing 105
Decimal Point Insertion 106
Zero Suppression 106
Comma Insertion 107
Zero Suppression with Asterisk Ingsertion 107
Fixed Dollar Sign Insertion 108
Fixed Minus Sign Insertion 108
Fixed Plus Sign Insertion 108
Floating Dollar, Minus, and Plus Sign Insertion 109
CR and DB Insertion 109
Alphanumeric Insertion 110
Decimal Point Scaling 110
Blanking Out a Field 111
Output Techniques 111
The WRITE Statement with Data-Name Option 111
The WRITE Statement with FROM Option 112
Double Buffering 112
Program Example 114
Statement of the Problem 114
Input 114
Output 114
Structure Chart 114
Program 115
Discussion 118
Programming Style 120
Common Errors 120
Exercises 120
Problems 122

xiv Contents

Chapter 8

Arithmetic

124

Chapter 9

Terms and Statements 124
Initialization of Numeric Fields 125
VALUE Clauses 125
Elementary Moves 125
Group Moves 125
Signed Numeric Fields 126
The ADD Statement 126
The TO Option 126
The GIVING Option 128
The SUBTRACT Statement 129
The FROM Option 129
The GIVING Option 131
The MULTIPLY Statement 133
The BY Option 133
The GIVING Option 134
The DIVIDE Statement 135
The INTO Option 135
The GIVING Option with INTO or BY 136
The REMAINDER Option 138

Arithmetic Statement Options of ROUNDED and ON SIZE ERROR 139

The ROUNDED Option 139
The ON SIZE ERROR Option 140
The COMPUTE STATEMENT 141
Simple Conditional Statement 142
Program Example 143
Statement of the Problem 143
Input 145
Output 145
Structure Chart 146
Program 146
Discussion 150
Programming Style 151
Common Errors 151
Exercises 152
Problems 153

Logical Sequence and Control

156

Terms and Statements 156
Collating Sequence 157
Comparisons 157

Numeric 157

Nonnumeric 158

The IF Statement 158
Relational 161
Conditional 161

Sign 165

Class 166

Nested IF Statements 167
IF/ELSE 167

Alternative to Nested IF Statements 172
Compound IF Statements 175

Chapter 10

Implied IF Statements 178
Subject 178

Operator 178

Program Example 179
Statement of the Problem 179
Input 179

Output 179

Structure Chart 179
Program 180
Discussion 183
Programming Style 184
Common Errors 184
Exercises 185

Problems 186

Validation of Input Data

Contents

Xxv

189

Chapter 11

Terms and Statements 189

Types of Data Validation 190
Required Fields (Existence Test) 190
Justification Tests 190
The REDEFINES Clause 191
Numeric or Alphabetic Tests 192
Inspection 193
Sign Tests 194
Limit and Reasonableness Tests 195
Code Checking 195
Date Checking 196
Consistency Tests 196
InterFile Tests 196

Program Example 198
Statement of the Problem 198
Input 199
Structure Chart 199
Program 206
Discussion 212

Program Validation—Interactive Applications 213

Programming Style 213
Common Errors 213
Exercises 217
Problems 219

Conftrol Break Processing

223

Terms and Statements 223
One Level Control Breaks 224
Input 224

Output 225

Program Operations 225
Structure Chart 225
Pseudocode 227

Program 227

Discussion 2306

xvi Contents

Chapter 12

Two Level Control Breaks—Program Modification 232
Program Operations 232

Structure Chart 233

Pseudocode 236

Program 237

Discussion 240

Multiple Control Breaks—Program Modification 243
Program Operations 243

Structure Chart 244

Pseudocode 245

Program 245

Discussion 249

Module Deletion—Changing Requirements 255
Pseudocode 255

Modification 257

Program 258

Detail and Summary Reporting 263
Programming Style 2863

Common Errors 263

Exercises 264

Problems 264

Sorting Files 267

Chapter 13

Terms and Statements 267

Sorting Concepts 268

Sorting Alternatives 268

Main Storage during Use of SORT Statement 269

Use of the SORT Statement 269
Sort Components 269

Options of the SORT Statement 272

A More Complex Example 283

Common Errors 288

Exercises 289

Problems 290

Tables 292

Terms and Statements 292
Table Concepts 293
Need for Tables 293
Definition and Creation of Tables 294
Table Access 295
Table Concepts—Single Level Tables 295
Creating 295
Accessing 298
Searching 300
Combining Two Tables into One 301
Table Concepts—Two Level Tables 301
Creating 304
Accessing 308
Searching 308

Chapter 14

Contents xvii

Program Example 311
Statement of the Problem 311
Input 313
Output 313
Structure Chart 313
Program 316
Discussion 320

Programming Style 322,

Common Errors 322

Exercises 322

Problems 324

Tape and Disk Processing 328

Chapter 15

Terms and Statements 328
Physical Structure 329
Storage Capacity of Magnetic Tape 329
Storage Capacity of Magnetic Disk 329
File Organization 330
Sequential File Creation 330
Program Example 331
Program 332
Indexed-Sequential File Creation 335
The SELECT Statement 335
Program Example 337
Program 337
Indexed-Sequential File Reporting 341
Random Reporting 341
Sequential Reporting 341
Indexed-Sequential File Maintenance 349
Adds, Deletes, and Changes 350
COBOL Statements Necessary for Random Updating 350
Program Example 352
Program 353
Transaction Validation 358
Programming Style 359
Common Errors 360
Exercises 360
Problems 361

Additional Topics 363

Terms and Statements 363
ENVIRONMENT Division 364

SPECIAL-NAMES Paragraph 364
DATA Division 367

77 Level Number 367

USAGE Clause 367

LINAGE Clause 370

Multiple Type of Records for a File 372

The COPY Statement 372

xviil Contents

PROCEDURE Division 373
The ACCEPT and DISPLAY Statements 373
The WRITE Statement 375
The GO TO Statement 377
The PERFORM Statement 377
The GO TO/DEPENDING ON Statement 379
Qualification of Data-Names 380
CORRESPONDING (MOVE, ADD, SUBTRACT) 380
Common Errors 382)
Exercises 383

Appendix A COBOL Language Formals 385
Appendix B COBOL Reserved Words 402
Appendix C Data Sets for Use with Textbook Problems 404
Appendix D Answers to Selected Exercises 418
Appendix E Text Editors 426

Index 435

il

TERMS AND
STATEMENTS

Introduction to
Programming

.

COBOL is an industry language rather than one developed by a specific com-
puter vendor. It has gone through many revisions, with the industry primarily using
the standards published by the American National Standards Institute (ANSI) in
1968 and 1974. Though revisions are currently under consideration, it may be some
time before another version becomes standard. This text assumes the use of the
1974 standards.

COBOL is a file processing language that was developed and has been used
primarily as a batch processing language. However, it is also adaptable for interac-
tive applications.

Throughout the text many new terms and COBOL statements are introduced. It is
a helpful reminder to list all of these terms and statements so that the student
can see at a glance important new concepts that are covered. These terms are
boldfaced when they are explained. The following terms are introduced in this
chapter:

2 Chapter 1

COBOL History

COBOL is a unique computer language in that it was developed by the computer
industry rather than by any one computer vendor. The beginnings of COBOL can
be traced to the U.S. Department of Defense. The defense department was having
difficulties working with the many different computers and computer languages pur-
chased and used by their defense contractors. Because of the need for each contractor
to provide contract costs, progress of the contract, and so forth, the defense depart-
ment was perplexed by the monumental task of auditing the results from each
defense contractor.

The Committee on Data Systems Languages (CODASYL) was created in 1959
to consider the possible development of a single computer language that would
be useful for administrative applications. The defense department reasoned that
if all defense contractors were using the same computer language, then the problem’s
magnitude would be lessened. CODASYL was comprised of computer users, defense
department representatives, computer manufacturers, and others. The results were
released in April 1960 and became known as COBOL (Common Business Oriented
Language). COBOL was developed to be (1) standardized, (2) self-documenting,
and (3) useful primarily for administrative applications.

Revisions were made in 1963 and 1965 by CODASYL, and numerous revisions
were made by individual computer vendors with concomitant decreases in standardi-
zation. In 1968 the American National Standards Institute (ANSI) prepared sugges-
tions for better standardization. Current ANSI standard COBOL compilers use either
the 1968 or the more current 1974 ANSI standards. ANSI is currently considering
a new COBOL standard, but has not yet obtained agreement within the computer
community as to what the new standards should be.

COBOL has become an extremely important language for administrative applica-
tions. There are literally millions of COBOL programs being used and continually
modified. COBOL programming skills are expected to be needed well into the future
because of the investment that firms have made in existing COBOL code. Notwith-
standing what one might hear about database systems and fourth-generation com-
puter languages, large and medium-size companies continue to recrnit programmers
who are competent in COBOL. Most microcomputer vendors now offer COBOL
compilers, and the industry is seeing more and more application packages that
are available in COBOL on smaller and smaller computers. COBOL is not dead:;
it seems to be thriving on an idea that is now over a quarter of a century old.
Those who intend to make a career of designing administrative computer systems
should make every effort to learn COBOL, and learn it well. It may be their ticket
to a successful career in information processing.

Hardware Concepts

No matter what kind of computer or what kinds of programming languages are
being used, the programmer must consider some hardware and software concepts.
The understanding of these concepts is essential in getting the computer to accom-
plish a task. The concepts are all relatively simple, but necessary to understand
before the user begins to look at the COBOL programming language.

In any computer system, from the smallest personal computer to the largest
mainframe computer, there are four hardware components in almost any given appli-
cation. These components are depicted in Figure 1-1. The four major components
are input devices, the central processing unit (CPU), output devices, and auxiliary
or permanent storage devices. The purpose of any input device is to send data
and/or programs to the CPU to be processed or stored in the computer system.
Similarly, the output devices receive the data and/or programs sent to them from
the CPU. Auxiliary storage devices accept data from the CPU for more or less
permanent storage of data and/or programs. All auxiliary storage devices are actu-

Introduction to Programming 3

Figuré 1-1 Hardware Components of a Computer System

Central Processisng Unit

Control
Section
Input Arithmetic/ Output

Devices Logic Unit Devices

Primary
Storage

T »

Auxiliary
Storage

ally both input and output devices, because data can be stored on or retrieved
from these devices.

Central Processing Unit

Control Section

Arithmetic/Logic
Unit

Primary Storage

The several functions of the CPU are served by three major units, the control section,
the arithmetic/logic unit, and primary or main storage.

The control section acts as the supervisor for the entire computer system, directing
the activities of the CPU and the activities of all input and output devices, including
auxiliary storage. Examples of activities controlled are the' movement of data and/
or programs from an input device into memory, movement of data and/or programs
between auxiliary storage and primary storage, and movement of data to an output
device.

The arithmetic/logic unit performs all mathematical functions, such as multiplication
and rounding; it also gives the computer its logic capabilities, such as comparing
two different values, checking the validity of the data as they are being transferred
from one location to another, or allowing a program to be executed in a different
sequence, enabling the programmer to change the way the program operates.

Primary storage, also called memory, allows the storage of data and programs that
can be immediately accessed by the computer system. Primary storage is considered
temporary because of the volatile media used to store data and programs in the
CPU. Volatility means that the stored data gets lost unless stored on a more perma-
nent device. To illustrate this point, consider what happens when a hand-held calcu-
lator is turned off; all values, except those placed in a memory register, are lost.
Primary storage is the same; if the computer is turned off, all data is lost. Additionally,
other programs need the space as soon as one program has completed its tasks.
A subsequent program overlays previously used storage locations in memory when
it needs to use the locations. This overlay process has considerable importance
later as the COBOL statements that manipulate data in primary storage are devel-
oped.

