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PREFACE

The design and development of digital systems can be partially
automated by using digital computers as design tools. To accomplish this,
effective techniques must be established for each of the various steps of design,
evaluation, manufacture, and maintenance. In the process of automated
development of such systems, digital computers have been utilized both as
controlling devices and ancillary aids.

‘ The rapid growth of design automation has been evidenced by the
investments of large digital system manufacturers, as well as by the relatively
significant commitments made by small companies and some software
organizations.

Unfortunately, the growth of the automation technology has not been
matched by the existence of adequate and easily obtainable literature. This
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difficulty has been compounded by the fact that until recently, few techniques
related to design automation were taught at the university level. As a result,
there is considerable ignorance of many existing techniques, even among
practitioners. The user can find only sparse justification to permit him to
evaluate, with confidence, the adequacy of various techniques. Thus, work is
frequently duplicated and, as new people enter the field, they often “re-jnvent
the wheel.”

Recognizing this problem, the Executive Committee of the IEEE
Computer Group created an ad hoc committee of the Design Automation
Committee to write a substantive book on design automation which would
provide: 1) a definitive introduction to the technical aspects of digital
system design and development for individuals with either hardware or
software oriented backgrounds, 2) a guide to the selection of techniques for
inclusion in a design automation system, and 3) a foundation from which
others could develop new and better design automation techniques.

This volume and a subsequent one are the results of this effort which
first began late in 1968. This volume deals with four aspects of the logic of
a system ; namely, synthesis, simulation, testing, and physical implementation.
The latter area includes partitioning, placement, and routing. The subsequent

“volume will deal with system level simulation, simulation and synthesis at
the register transfer level, file maintenance, and interactive systems.

These two volumeg collectively describe practical techniques which
have either been successfully employed, or have been considered to be useful
alternatives in a design automation system. The constraint of practicality often
eliminates both total enumerative and elegant theoretical techniques. Enum-

- erative techniques, though effective since all digital systems are finite, are
usually computationally infeasible due to high costs. On the other hand, the
implied benefits of many theoretical solutions may not be achievable in actual
practice. '

We realize that what is and is not practical varies with the user, the
number of parameters in the problem, and time. Due to the rapid technolog-
ical advances, solutions to problems posed today may not be acceptable
solutions for these same problems tomorrow. Here we discuss techniques in
which the cost of developing and executing the design automation system are
reasonable, and in which acceptable results are obtainable.

This work is suitable not only for those who are familiar with some
aspects of design automation, either from a hardware or software viewpoint,
and wish to learn about other areas, but also for those just erifering the design
automation field. It will be of particular interest to students who desire to
learn aspects of computer design which are different from those taught in the
traditional courses on logic design and switching theory. The reader need only
have a basic knowledge of digital computers and logical design.
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We believe this work will also have strong appeal to the applied com-
binatorial analyst, since we cover aspects of many key subjects in this- field
such as discrete optimization theory, branch and bound techniques, integer
programming, graph theory, the covering problem, the traveling salesman
problem, the assignment problem, and the quadratic assignment problem.

The subject matter has been divided into two volumes, the first being
somewhat hardware oriented, the second software oriented.

Volume 1 deals with the problems of logic synthesis, simulation, testing,
and physical implementation.

In chapter one we introduce the general area of computer aided design
of digital systems, discuss the motivation for and goals of computer aided
design, and outline the historic development of this growing area. Finally,
the chronological steps involved in the realization of a new digital system are
outlined, and we indicate where and how design automation can interact in
" each step of the design and manufacturing process.

The classical problem of logic synthesis is discussed in chapter two,
where techniques are presented for logic simplifications, factorization, and
conversion between different families of logic elements. Practical restrictions
related to fan-in and fan-out constraints are considered.

Chapter three deals with the simulation of a digital system at the logic
or gate level. Here, the goals of logic simulation, simulation languages,
techniques, and systems are discussed.

The next three chapters deal with three major problems related to the
physical construction of a digital system.

Chapter four relates to various partitioning and assignment problems
associated with component layout, as well as to problems of evaluating the
effectiveness of standard circuit modules. '

Chapter five presents a detailed analysis of various placement algo-
rithms dealing with the problems of initial placement and placement improve-
ment. These techniques are applicable to a wide range of backplane functional
units, e.g., components, modules, and boards.

The interconnection or routing problem is treated in chapter six.
The discussion covers both discrete and etched multi-layer connection
techniques, including the related problems of ordering of interconnections,
path selection, pin selection, and layer selection.

Finally, in chapter seven we cover the problem of generating fault
diagnostic and detection tests for combinational and sequential logic circuits.

As programming languages have evolved from machine code to
assembly languages to machine independent languages, so digital design
languages have evolved from circuit descriptions to Boolean expressions to
register transfer languages and finally to system level languages. Yolume II
will deal primarily with new design techniques at the higher levels of descrip- -
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tion as well as associated support systems. More specifically, this work will
cover material on the following subjects:

1.

=BT I VRN

Descriptive languages for digital devices at the system or functional level,
and related simulation techniques used in evaluating system performance.

. Register transfer languages.

Synthesis of digital devices from their register transfer level description.

. Simulation of systems at their register transfer level.

Data-base systems for use in an integrated design automation system.

. Interactive graphic systems and their role in computer-aided design.

As a final note I would like to thank my co-authors who have contrib-

uted so much of their time and effort in the preparation of this book.

MELVIN A. BREUER
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chapter one

INTRODUCTION

RALPH J. PREISS

IBM Systems Development Division
Poughkeepsie, New York

This chapter presents an overview of the purpose and evolution of design
automation and its application to the computer design process. As an over-
view of a field involving many manufacturers, universities, and research
foundations, the reader should not assume that any process described is
practiced by any particular organization. Rather, the reader should realize
that this overview is a synthesis of the many practices that the author has
observed, read about, or discussed with other design automation practi-
tioners.

The chapter is divided into three sections. Section 1.1 reviews the objectives
of design automation and the attempts that have been made to achieve them.
Section 1.2 covers the history of design automation as an evolutionary
discipline. Section 1.3 provides a summary of the steps involved in the design
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2 Introduction ) Chap. 1

of a digital system, and it emphasizes the designer’s responsibilities and
interplay with a design automation system.

1.1 DESIGN AUTOMATION OBJECTIVES
AND USAGE

Design automation, as used here, is a goal rather than an immediately
realizable objective. It is the art of utilizing digital computers to help generate,
check, and record the data and the documents that constitute the design of a
digital system [1].

The objectives of design automation are cost- and time-reduction between
start of design and completion of fabrication. These objectives are ac-
complished by relieving design engineers of repetitive, time-consuming
manual tasks such as:

1. generating detailed design information and documenting it on what is here

called systems logic pages;

2. controlling changes to systems logic pages;

. checking systems design for electrical, logical, and physical compatibility;

4. preparing wiring lists, cable lists, location charts, and other manufacturing

data, such as the bills of material, and tests.

A wide variety of topics are covered by the design automation umbrella.
The only unifying theme is the elimination of repetitive manual operations
or computations in the design of digital systems. Excluded from consideration
are the computations for the design of components, circuits, mechanical
structures, and cooling. Design automation, therefore, limits itself to filling
the gap between the systems specifications and the manufacturing data. It
is involved with converting the systems specifications into logic hardware,
packaging the hardware into mechanical structures, and describing this
process for fabrication.

If the design process could be fully automated, the conceptual data that
describe a proposed digital system in a higher-level language could be convert-
ed directly into the mass of detailed data, i.e., part numbers, assembly
sequences, cabling information, etc., necessary to.manufacture the machine.
Failing complete automation, design automation can be used as a data base
from which to extract design information on demand, calculate (with spe-
cialized design mechanization aids) additional details, and then return the
new data to the data base. This permits creative manual intervention and
allows additions and deletions to be made as specifications change.

The data base in which the design is described may contain computer-
generated as well as hand-generated data. This includes, for each logic

w



Sec. 1.1 Design Automation Objectives and Usage 3

function, the part number code implementing it, its physical placement -
in the machine frame, test points, cabling and internal wiring information,
cross-referencing data, notes, and design change activity information.
Supplementary information, such as the exact location and types of bends or
the lengths of cables and interconnecting wires, may be omitted from the
main documents and relegated to secondary documents. Similarly, the detail-
ed description of subassemblies, such as discrete components mounted on
cards, may be relegated to secondary documents. However, each of these
secondary documents, once entered into the design automation system data
base in computer-readable form, is seldom retranscribed but is utilized by the
system in subsequent calculations. v

While the basic goals of design automation tend to be the same from one
manufacturer to another, the automating philosophies tend to be quite
different. On the one extreme, a manufacturer considers the accuracy of his
field documents paramount and therefore uses the machine-readable data
base and the same documents in design and manufacture. On the other
extreme, a manufacturer may permit differences between the field and the
design and the manufacturing documents. The latter approach could best be
described as having multiple data bases. It is characterized by multiple
transcriptions to or from computer-readable form to take advantage of the
computer for certain calculations, such as logic simulation (requiring logic
data), wiring (requiring interconnection data), or load checking (requiring
electrical data). Errors that crop up through transcription mistakes are
detected by procedural means. The field documents are usually draftsman-
produced, and they may or may not fully reflect the latest design changes.

Design automation programs are generally not shated among manufac-
turers, since the programs are quite heavily dependent upon design philoso-
phies, circuit technology used, and the computer available to the design
engineer to help him with his work. (The use of higher-level languages usable
with different computers has been quite discouraging. These tended to be
inefficient: fine for experimental purposes, but too expensive for production
use.) Furthermore, design automation is especially advantageous if standard-
ized packaging and logic are used and if a standard control system, unique to
individual manufacturers, is set up. These aspects are usually proprietary
since they are tied into providing an economic advantage of one design/
manufacturing process over another.

Besides automating design checking and record-keeping, a design automa-
tion system serves another important function: effective change control.
By reducing design and engineering-change time, it permits logic changes to
be made late in the development process, assures accurate manufacturing
instructions and test procedures, and instills a confidence that manual proce-
dures could not hope to attain.
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1.2 EVOLUTION

In the mid-1950s, the first generation (tube generation) of stored-
program computers was in its prime. At the same time, transistor technology
was getting to be understood, and uniform circuit characteristics could be
assured in large batches of manufactured components. It was obvious that
the new (second generation) computers being designed would utilize this new
technology.

While transistor circuits were smaller, faster, and cheaper than their
tube counterparts, their use implied that the new generation of computers
would have to be redesigned from the frame up. In addition, the small size of
the new components meant the introduction of new problems in packaging
~ and interconnection. Where 2 single 7-tube circuit might require some 100

cubic inches of space, perhaps ten transistor circuits might require no more
space. The smaller components permitted an increase in circuit speeds, but
inductive noise was increased at the same time because of the closeness of
the interconnecting wires.

Also, at this time, computer manufacturers were faced with the prospect
of meeting contractual deadlines for military computers using transistors.
These deadlines forced computer manufacturers to look for new ways to de-
sign computers in order to reduce their risks.

1.2.1. Efforts to Automate Design
Procedures

Around 1955, without a single bit of literature appearing in any of the
journals, the idea of design automation caught on, and the major computer
manufacturers were all in the computer-aids-to-design, or design-mechani-
zation, or design-automation business.

In a typical company, study of the design procedures showed that a logic
designer sketched out his ideas in rough form and passed them on to drafts-
men who put them into more readable form. Additional information would
be added to a copy of the draftsman’s drawings until enough information was
contained so that the wiring and cabling layout could be developed. This
process in itself would add additional information to the master diagram.
Each time an addition or a change was made, the history would be recorded,
and the appropriate designer would initial the drawings after review.

With the advent of transistor circuits, the wiring layout designer’s job
became more difficult. He had to make sure that two adjacent wires didn’t
travel too many inches in parallel because of “noise buildup.” He constituted
a vital link and he needed assistance in the design and build process. The com-
puter could be used to lay out the wiring grids, take into account capacitive
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loading and interwire noise, and print the diagrams of these wires. This ap-
proach could provide a more direct involvement of the designer in the final
hardware. It could also aid in the manufacturing process by calculating the
path and the sequence that the wire-wrap people should follow.. Furthermore,
these calculations could save days in the schedule.

The computer designers also realized that they could substantially improve
design turnaround if the logic diagrams were maintained on magnetic tape
files and the computer could print these diagrams for every engineering
change. It would only be necessary to keypunch a few cards describing a
change, update the master file, and a printout of the modified design could
be obtained in a few minutes.

1.2.2. First Uses of Design Automation

One of the first design automation systems described in the literature
was presented at the 1956 Western Joint Computer Conference by Cray and
Kisch [2). They described a three-phase program which started with the
checking of logic equations for logical, clerical, and timing errors. Further
checking could be done by counting the number of inputs and driven outputs
per circuit (i.e., fan-in/fan-out checking). The Boolean equations could
also be sorted into various categories, and printed outputs could be provided
to those who needed them. In the second phase; the simulation phase, the
designer could apply input values to his Boolean equations from a simulated
switch panel and watch the results as though he had built the machine and
were testing it out. Finally, in the third phase, he could package his design
into assemblies, compute the interconnections between chassis, provide lists
of the origin and destination points, and designate the color and the lengths
of the wires. One interesting observation which also might indicate the
pioneering nature of this article is that it cited no references. Another early
article by Kloomok, Case, and Graff, describing a similar but more elaborate
system, was presented at the Eastern Joint Computer Conference in 1958
[3]. After 1960, many manufacturers were busy discussing their systems
[4], [51, [6), [7], 8], [9]. Figure 1-1 depicts the major problems facing computer
designers and design automation. What follows here is a narrative account of
the design-automation evolution.

Let us return to the development of design automation systems. Initially,
the input for the wiring layout was from system logic blueprints: From these,
the coordinates of the series of points which were to be connected by wires
were keypunched. The computer program consisted of the wiring rules and
legal wiring channels. After reading the keypunched coordinates, the com-
puter produced a listing that indicated the length of each wire, the sequence
in which each should be installed, and the route each wire should take (Fig.

1-1, items 1 and 2).
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1. Capacitive loading
and interwire noise
in new circuit families ~——=+- 2. Minimize noise generation
by detailed calculations = 3. Design errors due to drafting
and transcribing errors in
4. One source data bank with - primary and secondary documents
extensive checking on, ’
entering data

5. Assure accuracy of design
before high production
speed piles up scrap and
rework costs — e—me—————p 6. Eliminate logic errors
through simulation ——— 7 Cannot contain full
design in computer
8. Cut design into number of ~e—storage for simulation
" pieces, each fitting into

11. Need more manual e~  storage =" 9. Long computer run times
preparatign to check 10. Provide more computer ~emmm———J
data used in power for simulation

simulation  =—w——e———s—e—p- |2. Eliminate simulation;
express design in higher
level language and perform
autosynthesis ~~——————e 13. No one language and process found
. suitable on all counts to permit
14. Do computer-aided design: «— this
permit creativity to be
supplied by human, detail
calculations by machine

15. Too many manufactured
parts et | 6. Permit standard parts to

19. Nonfunctional unit—test;d -e— make up detail design ———e—e- 17. Changes affect many parts users

hardware does not work 18. Develop “where-used”

after assembly into system: file

find the failing part «——— 20. Develop diagnostic tests
at circuit and wire level

21. New component: control
store s eeemeng 22 Develop new DA system

23. New technology: LSI == 24. Develop new interactive
DA system

Fig. 1-1. Design automation evolution.
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Meanwhile, manufacturing engineers considered automation further. Why
should people wire panels? Why not have a computer produce punched
cards with instructions that a wiring machine could follow? Couldn’t the
data from the engineering listings be keypunched in the proper format for
the wiring machine ?

The Gardner-Denver Tool Company developed a card-controlled wiring
machine which came into extensive use in the late 1950s [10]. The programs
that routed the wires were modified to control this machine. With its use,
not only was wiring speed increased, but also fewer errors occurred. The
backpanel wiring technicians could now multiply their productivity tre-
mendously. But all could not be automated. Since the engineers were con-
stantly improving their designs through engineering changes, manual rewiring
was still necessary.

Concurrently, schemes to accumulate changing engineering information
on a logic master tape were developed. This master tape could then be printed
out to indicate the design status, and the printouts could be marked with
colored pencil to indicate more changes. Then, only the changes would have
to be keypunched to update the master tape. The engineer who provided
the original sketch would have to proofread only the marked-up sections,
thus saving himself a considerable amount of time.

However, the logic design had earlier depended upon draftsmen to design
the packaging, do the design checking, and sometimes even add carelessly
left-out details. With the draftsmen removed from the design process, the
design engineer had more details to contend with. For example, a simple
keypunch error could hurt the design schedule. (Fig. 1-1, item 3). To aid the
designer in following details, checking programs were developed to perform
a reasonableness check on the data fields of the master tape: alphabetic versus
numeric formats of known functions, physical layout (so that two packages
didn’t occupy the same slot), and circuit fan-out (overloading). Some of these
check the keypunch operators; others check the logic designers’ application
of the rules of design (Fig. 1-1, item 4).

One might ask if this was design automation. The answer might be that
the drudgery of drawing lines, of copying numbers, and of cutting, pasting,
erasing, and redrawing had been removed. The designer had more direct
control over the implementation and accuracy of his design.

1.2.3. Use of Simulation

Meanwhile, an attempt was being made to reduce engineering change
activity. With the high production rate of the automatic wiring machine,
errors could be reproduced rapidly. Slow response could cause a lot of scrap -
and rework, and many dollars would be wasted. If the logic were simulated, -
proven once and for all to work the way it was intended to work, and checked
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to ensure that nothing was left out inadvertently, fewer designers would be
needed, and scrap and rework would be reduced, if not eliminated (Fig. 1-1,
items 5 and 6).

The engineers quickly found that in a small (4000 word model) computer
they could not contain the entire design that they wanted to simulate (Fig.
1-1, item 7). But even 8000 words sometimes were not enough. Only a few
small pieces of the design could be simulated in each computer run. Fhe
value of the time needed to keypunch the data and evaluate the results was
often more than the value of the results themselves. But programming helped
solve the problem by putting the complete design on a drum or tape storage
and swapping small segments with high speed memory as required. This
technique tended to use up much computer time (Fig. 1-1, items 9 and 10).

Simulation had run into trouble. The amount of data generated and
printed out was unwieldy. The designer disliked having to generate data for
the unnatural partitions into which his logic had to be subdivided in order to
fit into the computer (Fig. 1-1, items 8 and 11). Why not validate a design
before it gets into the detail level? In one sense, the true creative person
in the design of a computer is the computer architect rather than the designer.
If the architect could express his design in some language that could be syn-
thesized directly into logic (Fig. 1-1, item 12), the logic then could be imple-
mented in hardware, assigned to panels and frames, wired, and cabled
automatically. It could be tested at the higher design language level by
another program to prove that the architect’s design, as conceived, was
indeed implemented. If simulation as a means of testing a manually produced
detail design did not at first succeed, maybe it should be approached different-
ly and bypass the designer by going directly into an automatic synthesis rou-
tine. Of course, the utopia we speak of has not yet been realized. It has
literally been lost in a Tower of Babel (Fig. 1-1, item 13). The languages for
expressing the architect’s dream are many. A discussion of higher level design
languages is planned for Volume II of this series. Suffice it to say here that the
search is still on for a simple, yet effective, man-machine system for computer-
aided design (Fig. 1-1, item 14).

In the meantime, especially with the advent of large-scale memories,
simulation was integrated into design automation systems so that the de-
signers could make use of the already-digitized data base. Simulation thus
became a practical and widely used tool.

1.2.4. The Advent of Standardization

With some success at automation behind them, manufacturing engin-
eers introduced additional cost-saving changes by sharing fabrication tech-
niques between models and by establishing a standard interface between
design-automation-produced data and manufacturing-usable data (Fig. 1-1,



