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PREFACE

A complete analysis of stress and strain in a structure, as the load is increased to
failure, is known to be very complicated. This is particularly true in soil mechanics
and soil-structure interaction problems where, unlike traditional structural en-.
gineering, the analysis almost always involves two- and three-dimensional continua.
With the present state of development of finite-element computer softwares and
high-speed- digital computer hardwares, we can confidently say that an almost
unlimited range of solutions can now be obtained. These are not limited to linear
elastic small-deformation solid mechanics but can be extended to include problems
of various kinds involving mate{ial and geometric nonlinearities. This book is
concerned with the development of numerical tools for solutions of nonlinear
analysis problems in soil mechanics. ., '

The mathematical theories of clifi@i#and plasticity are employed for the
constitutive modeling of the soil behavior. The theoretical foundation and basic
concepts of material modeling are described in details in PART 11 including critical
discussions of the Theory of Elasticity and Modeling in Chapter 3, the Theory of
Perfect Plasticity and Modeling in Chapter 4, and the Theory of Hardening
Plasticity and Modeling in Chapter 5.

The material nonlinearity is represented in PART 11 by an elastic-plastic cap-type
model which can treat ecither strain-hardening or strain-softening materials. The
plasticity formulation and calibration (Chapter 6) together with the numerical
algorithm developed for its implementation and predictions (Chapter 7) provide a
general format for incorporating various plasticity models described previously in
PART 11 into the cap-type of plasticity relationship of PART m1 suitable for direct
finite-element applications. In particular, the Drucker-Prager model with an elliptic
hardening cap illustrated in details in Chapter 6 and coded in Chapter 7 as a
SUBROUTINE CAPMDL represents an adequate constitutive model for the short-time
behavior of many geological materials over a wide range of loadings..

The geometric nonlinearity for large-deformation analyses is described in details
in PART 1Iv. The theoretical foundation of large-deformation formulation and its
simplification are described in details in Chapter 8. The nonlinear finite-element
equations for large deformation and material inelasticity are solved by a combined
incremental and iterative solution technique ¢(Chapter 9). Two types of iterations are
carried out, the first being iteration an the material parameters and the second
equilibrium iterations. The method of analysis is based on a displacement formula-
tion of the finite-clement method. Large displacements are accounted for using a
total Lagrangian formulation and an updated Lagrangian formulation. {




vi »

Applications of the nonlinear theory are presented for a wide range of numerical
examples throughout the book. In particular, several case studies using the computer
program developed are presented in PART 'V (Chapter 10). First the material
nonlinearities involving associated as well as non-associated flow rules with differ-
ent procedures for the determination of the material parameters from the experi-
mental data are examined for strip: footings on stratum of clay. The algorithms for
the behavior of the clay are then tested and checked for the simplification of
small-strain small-rotation formulation. Finally, small-strain large-rotation analyses
of elasto-plastic béhavior are carried out for vertical slopes under seismic loading,
This analytical simiplification is reasonable for most large-displacement problems in
geotechnical engineering applications and results in symmetric governing equations
in the large-displacement finite-element analysis. The complete progressive failure
behavior of slopes at all stress levels leading up to collapse is obtained. The collapse
loads of the. slopes and their associated failure mechanisms by the finite-element
method are compared with those of the limit analysis method.

* The book'can be used for nonkinear analysis courses in geotechnical engineering
of various lengths, involving mathematical modeling of materials (PART 11 and PART
1), large-deformation finite-element description of structures (PART 1v), and com- -

- puter implementation and numerical predictions (PART V). In writing this book, we
have endeavored to make the prerequisites as few as possible. Some background on

+{be theory of linear elastncny and the finite-element method is assumed. The book is
aimed to the graduate student in civil engineering who has sufficient background in
soil mechanics and is learning about inelastic behavior of materials and large-dis-
placement description of strucmms for the first time. The inclusion of computer
subroutines for soil cap modeis fs‘intznded to encourage ihem ;0 try out these
models in-a direct mannet,

May, 1988 | S . ,' " W.F.Chen
o : E. Mizuno
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FUNDAMENTALS






Chapter |

" INTRODUCTION

1.1 INTRODUCTION

- For a long time, soil mechanics has been based on Hooke’s law of linear elastxcuy
for stress and deformation analysis for a soil mass under a footing, or behind a
retaining wall, when no failure of the soil is involved. This is known as the elasticity
problem in soil mechanics. On the other hand, the theory of perfect plasticity is used
to deal with the conditions of ultimate failure of a soil mass. Problems of earth
pressure, retaining walls, bearing capacity of foundations, and stability of slopes are
all considered in the realm of perfect plasticity. These are called stability problems.
Long-term settlement problems and consolidation problems, however, are treated in
soil mechanics as essentially viscoelastic problems.

Partly for simplicity in practice and partly because of the historical development
of mechanics of solids, the elasticity problems and the stability problems in soil
mechanics are treated separately and in unrelated ways. The essential connection
between the elasticity problems and the stability problems is known as the progres-
sive failure problems. The progressive failure problems deal with the elastic-plastic
transition from the initial linear elastic state to the ultimate state of the soil by
plastic flow. The essential set of equations for the solutions of progressive failure
problems is the constitutive equations of soils, which give a unique relationship of
stress and strain for different geotechnical materials. These relationships and
applications to soils and rocks are discussed in the following Chapters.

1.2 CHARACTERISTICS OF SOIL BEHAVIOR

Some typical siress-strain curves for soils in the triaxial tests are shown in Fig.
L.1. As can be seen from Fig. 1.1a, the relation of the deviatoric stress o;-0, v.s.
axial strain ¢, for a normally consolidated clay in a drained test is characterized by a
nonlinear response curve which rises at a slower rate after reaching a certain stress
level. Here, the further straining is always associated with an increase in stress. This
phenomenon is known as strain-hardening. The stress-strain curve for overconsoli-
dated clay in an undrained test exhibits the same behavior as that of normally
consolidated clay in a drained test. The overconsolidated clay in a drained test and
normally consolidated clay in an undrained test behave differently from those
mentioned above. The stress-strain curves both have a clearly defined peak occur-

;jng"gt a low strain level. An element of these clays, strained beyond the strain _

ve.



O3~ 0,

Undrained Test on
Overconsolidated Clay

Drained Test on Overconsolidated
Clay

Drained Test on Normatly
Consolidated Clay

DEVIATORIC STRESS

Undrained Test on Normally
Consolidated Clay
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a) Behavior of Clay

Undrained Test on Dense Sand

0;-0,

Drained Test on Dense sand

Drained Test on Loose Sand

DEVIATORIC STRESS

Undrained Test on Loose Sand

AXIAL STRAIN €,

b) Behavior of Sand
Fig. 1.1. Typical soil stress-strain curves.
corresponding to the peak stress point, becomes weaker than it was at this peak
point. This phenomenon is known as strain-softening.
Similar conclusions can be made from Fig. 1.1b for the behavior of sand. Dense
sand in an undrained test and loose sand in a drained test show the strain-hgrden-
ing. Dense sand in a drained test and loose sand in an undrained test show a peak

"
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stress followed by strain-softening to a residual stress. The behavior of dense sand
in a drained test is similar to that of overconsolidated clay in a drained test. The
similar behavior also occurs in the other corresponding cases for clay and sand.

~—
1.3 IDEALIZATIONS AND MATERIAL MODELING

The typical stress-strain behavior of soils presented in the previous Section is not
linearly elastic for the entire range of loading of practical interest. In fact, actual
behavior of soils is much complicated and they show a great variety of behavior
when subjected to different conditions. Drastic idealizations are therefore essential
in order to develop simple mathematical models for practical applications. No
mathemetical model can completely describe the complex behavior of real soils
under all conditions. Each soil model aims at a certain class of phenomena, captures
their essential features, and disregards what is Snsidered to be of minor importance
in that class of applications. Thus, this constitutive model meets its limits of
applicability where a disregarded influence becomes important. As mentioned
previously, Hooke’s law has been used successfully in soil mechanics to describe the
general behavior of soil media under short-term working load condition, but it fails
to predict the behavior and strength of a soil-structure interaction problem near
ultimate strength condition, because plastic deformation at this load level attains a
dominating influence, while elastic deformation becomes of minor importance.

Under a short-term loading, soil behavior may be idealized as time-independent
where the effects of time can be neglected. This time-independent idealization of
soils can be further idealized as elastic behavior and plastic behavior. As the first
step in constitutive modeling of soils, it is therefore logical to utilize and refine the
classical theories of elasticity and plasticity as developed for such an idealized
material. However, there are in many cases considerable differences between the
properties of soils and those of the idealized bodies. These differences may have a
significant influence on the solution of some boundary value problems in soil
mechanics. In such cases, the classical theories must be modifed and extended so
that the special properties of soils in certain practical applications are taken into
consideration.

A material for which there exists a one-to-one coordination between stress and
strain is known as elastic material. Thus, a body that consists of this idealized
material returns to its original shape whenever all stresses are reduced to zero. The
linear theory of elasticity used most commonly is the Hooke type or Cauchy type of
constitutive models for soils, in spite of its obvious shortcomings. These linear
elastic models can be significantly improved by assuming bilinear or higher poly-
nomial type of nonlinear fit for the stress-strain relationship of soil in the form of
secant formulations. This is known as the Hooke type or Cauchy type of elastic
formulation. These types of elastic models must be combined with criteria defining
“failure” of the soil.



In a more restricted sense, an elastic material must satisfy the energy equation of
thermodynamics. The elastic material characterized by this additional requirement is
known as hyperelastic material. On the other hand, the minimal requirement for a"
material to qualify as elastic in any sense is that there exists a one-to-one coordina-
tion between stress increment and strain increment. Thus, a body that consists of
this material returns to its original state of deformation whenever all stress incre-

' ments are reduced to-zero. This reversibility in the infinitesimal sense justifies the

use of the term hypoelastic for elastic materials satisfying only this minimal
requirement. The incremental constitutive formulations based on hypoelastic models
have been increasingly used in recent years by geotechnical engineers for soils in.
which the state of stress is generally a function of the current state of stresses and
strains as well as of the stress path followed to reach that state (Chen and Saleeb,
1982).

The elastic modeling in the form of secant or incremental formulations can be
quite accurate for soils sustaining proportional loading. However, this reversibility
associated with these formulations is not the case for a plastic material. Thus, these
formulations fail to identify plastic deformations when unloading occurs. This can,
to some extent, be rectified by introducing loading criteria as in the deformation
theory of plasticity. Although the deformation theory and the existence of loading
function are incompatible even in the most limited sense, it is still a very attractive
alternative for solution of large classes of soil and soil-structure interaction prob-
lems, because of its simplicity.

The flow theory of plasticity represents a necessary and correct extension of elastic
stress-strain relations into the plastic range at which permanent plastic strain is
possible in addition to elastic strain. This plastic strain remains when the stresses
are removed. Thus, the strain in a plastic material may be considered as the sum of
the reversible elastic strain and the permanent irreversible plastic strain. Since an
elastic stress-strain law as mentioned above is usually assumed to provide the
relation between the incremental changes of stress and elastic strain, the stress-strain
law for a plastic material reduces, essentially, to a relation involving the current
state of stresses and strains and the incremental changes of stress and plastic strain.
This relation is generally assumed to be homogeneous and linear in the incremental
changes of the components of stress and plastic strain. This assumption precludes
viscosity effects and thus constitutes the time-independent idealization.

The first step towards such a mathematical model is to establish the yield limit of
an elastic material. This is known as the yield function which is a certain function of
the stress components. A plastic material is called perfectly plastic or work-harden-
ing or softening according to whether the yield function as represented by a certain
hypersurface in six-dimensional stress space is fixed or it admits changes (expansion
or contraction) as plastic strain develops. For moderate strains, mild steel behaves
approximately like a perfectly plastic material. It is therefore not surprising that in .
early years (1950-1965) this perfect plasticity model was used almost exclusively
and extensively in the analysis and design of steel structures because of its
simplicity. The general theorems of limit analysis, developed on the basis of perfect



