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PREFACE

This volume contains contributions by some of the invited speakers of the

First International Symposium on Algebraic Structures and Number Theory
held in Hong Kong during the summer of 1988.

S. P. Lam
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reLd

Lineariration Problems on Affine Varieties

BY HYMAN BASS

Colunbia University, New York, NY 10027

Introduction.

We consider affine varieties, and work over € for convenience of exposition, though many
of the issues discussed are of interest over other base fields. The basic linear objects are the
affine spaces C” and the linear maps between them. In general one linearly approximates
varieties locally by their tangent spaces, and morphisms by their derivatives.

We are interested here in some global lincarization problems, of the following general
types.

I. Linearization of varieties. Find natural criteria for recognizing when a variety is
linear (i.e. isomorphic to some C%).

II. Differential criteria for global properties. Deduce global properties from condi-

tions on tangent bundies or derivatives.
A—

1fl. Linearization of morphisms. Find natural conditions for morphisms f:c8—cn
to be linear in snitable global coordinate systems.

iV. Linearization of families. Given a family of such objects parametrized over a base
variety S, and assuming that they are linear locally, or perhaps only fiberwise, over S, to
what extent is the family globally linear over $7

-
I propose to survey a number of well known problems that fit into this framewm;k, and
to give some information about the present state of knowledge, as well as some background
references. It will be apparent that our knowledge is in a very primitive state, though the

problems are very naive and natural.

1. LINEARIZATION OF VARIETIES

The basic issue here is to find “useful” characterizations of €9 as an algebraic variety.

Sotne problems on which to test usefulness are the following.



Cancellation Problem. From the condition X x €% = €%" can we conclude that
X 2 €97 Le., are “stably linear varieties” linear? -
More generally we have the:

Cartesian Factor Problem. If X x Y = C" then is X = €? (d = dim(X))?

Reductive Quotient Problem. If a reductive group G acts on X = €™ and if X/G is
smooth of dimension d, then is X/G = €47

Solving this afirmatively does likewise for the cancellation problem; for example let
{7L,,(C) act on the second factor of X x C" 2 €4+,

Let X = Spec(A4) be an affine variety of dimension d. Following are some ncccssary
conditions for X to. be isomorphic to C%.

(a) A is factorial: Pie(X) = 0.

(b) A has only constant units: AX = CX.

(¢) X is smooth.

{(d) X is affine 1-ruled. (Explained below.)

(¢) X has logarithmic Kodaira dimension §(X) = —oo (cf. [FI}).

(f) X is contractible.

(g) X is simply connected at infinity: x{°(X) = L.
For d = 1 it is easy to see that: (a) + (b)) = X = C. For d = 2 the known results

are much deeper. First we explain that “affine 1-ruled” signifies the following equivalent
ronditions (cf. [MS]):

(¥) A admits a locally nilpotent derivation # 0.
(s¢)- X admits a non-trivial action of &;.
{$i5) X contains an open subvariety of the form Z x C.
For Xa surface (dim(X) = 2) we have the following results.
(1) (C. P. Ramanujam, [R]). (¢} + (f) + (g) = X = C*.
(2) (Miyanishi, [M]). (a) + (b) + (¢) + (d) => X = C%.
(3) (Fujita, [F]). (¢) + (¢) = (d). Hence, (a) + B)+(c)+ () > X=C2
How it was observed by Fujita and Litaka [FI] that condition (¢} is cancellation invariant:
(4 X xV=CIxV = gX)=—o0.
Thus (3) and {4) solve the Cancellation Problem in dimension two:
(%) (Fujita, [F]). X x C* 2 C"+? = X ~ C%.
Fujita also formulates the:

TJONJECTURE (Fujita, [F]). If dim(X) = d then

() + () + () = X = .



If true, this Conjecture would solve the Cancellation Problem in all dimensions.

For d > 3 very little is known on these questions. Miyanishi and Sugie (unpublished)
have announced that X = C3 under the assumptions that X x €" = €3, X s affine
1-ruled, and a further technical condition related to the &,-action on X.

11. DIFFERENTIAL CRITERIA FOR GLOBAL PROPERTIES

The archetypal problem here is the:

JACOBIAN CONJECTURE. IfF : €4 — €% has everywhere invertible derivative F'(z) (i.c.
the Jacobian determinant det F'(x) is a constant # 0) then F is invertible.

This is trivial for d = 1, and remains an open problem for all d > 2 (cf. [BCW1]).

Immersion Problem. Suppose that X = Spec(A4) is parallelizable (i.c. has trivial tan-
gent bundle) of dimension d. Under what conditions can we immerse X in C%?

The pa.rﬂlclizability condition means that (J,;¢ = A?%. Then the immersion condition
nsks for an A-basis of Q4y¢ of the form dfy, ..., df; for suitable f; € A.

Here is the kind of situation where we would like to apply this. Suppose that X x C" =
Ct". Then it follows easily from the Quillen-Suslin Theorem (cf. [L]) that projective A-
modules are free, hence X is parallelizable. Suppose that we could then further conclude
that X admits an immersion f : X — €4, Then F =: f x Id: X x €" — €% x C" can
be interpreted as an immersion €4t" — €97 Assuming the Jacobian Conjecture, we
would conclude that F' is an isomorphism, hence so also is f. Thus we have an interesting
logical dependence among the Cancellation Problem, the Jacobian Conjecture, and the
Immersion Problem for stably linear varieties.

II1. LINEARIZATION OF MORPHISMS

Embedding Problem. Is every closed embedding C¢ — C%t™ linearizable, i.c. linear
relative to suitable global coordinates in C4+™?

Let us formulate this more concretely in the algebraic setting. We write RI® for s
pelynomial algebra in n variables over a ring R. The embedding above thus corresponds
to a surjection f : Cl4t™l _, €l9 say with kernel J. Then linearization asks for a system
of variables 2, ...,Zm4d of Cl+m! such that (i) z;,...,%m generate the ideal J, and (i)
f(Zm41)y- -+ f(£m44) generate the algebra €. In fact (i) implies (ii), and, conversely,



given (i), we can modify z1,...,2m by polynomials in 41, ... ,Zm44 to achieve (i). Note
that linerization includes the condition that €¢ is a “complete intersection” in €™ j.e.
that J is generated by m elements.

A few cases of the Embedding Problem are tnvially affirmative. When d = 0, every
¢mbedding of a point in €™ is obviously linearizable. When m = 0, every embedding
€4 - €9 is easily seen to be an isomorphism, hence linearizable.

For m = 1 an embedding €4 — €41 is defined by one equation, ¢t = 0. We ask whether
Clettly = Clott g, for some system zg,...,zq of variables for Cl*'], Then ¢, being a
scalar multiple of zg, is itself a variable.

This case (m = 1) of the Embedding Problem is already highly non-trivial. It includes
the only known substantial results. In the casemn =d = 1, the Abhyankar-Moh Embedding
Theorem |AM] linearizes closed embeddings of the line in the plane. Russell and Sathaye
R3] have linearized special cases of embeddings of C? in C3.

We saw that the case m = 1 of the Embedding Problem is the case m = 1 of the
folicwing:

“ariable Recognition Problem. How can we recognize when t = (iy,...,t;,) in A =
€im+dl ig part of a system of variables for A?

A necessary condition is that dt,,...,dt,, be a basis for a (free) direct summand of
147¢. That this condition should also suffice when d = 0 is just the Jacobian Conjecture.
However it is definitely not sufficient for d > 0. Consider for example the case d = m = 1;
wake t = 2+ (zy)? € A = Clz,y]. Then (1 — 2zy>)t; + 2%ty = 1, so di = t.dz + tydy is
animodular in Q4/c. However t = z(1 + zy?), being reducible, cannot be a variable.

¥or the Variable Recognition Problem it is more natural to consider A as an algebra
wver R = C[t] = C[t1,...,t;n]. To say that t is part of a system of variables for A is to say
~hat A = R!9, a polynomial R-algebra. A necessary condition for this is that the fibers
ise g0;

{a) Ap/pA, = {Ry/pR,)!¥ for all p € Spec(R).

The special case of this when p = (¢)R (= Rt; +--- + Rtp) is:

{s0) A/(t)A =l ’

"hus {ag) says that “¢ = 0” defines an embedding of €7 in C4*™. If the Embedding
Problem is affirmed then we can at least conclude that there is a system of variables
Zi,...,Zmd for A so that ¢;,...,t,, generate the same ideal of 4 as z,...,2m. When
m = 1 this is, as observed above, equivalent to ¢£; being a variable.

However for m > 2 {(ag) no longer suffices to make (ty,...,2,;) part of a system of
variables for A. For example (m =d =2) in A = C{z,y] take ¢}, = 2zy—1and 3 =z 1.
Then t; = 0, t3 = 0 defines the (reduced) point (1,1) € €3, yet t; is not a variable:
A/t; A = C|z,271]. This shows that something stronger than {ag), e.g. (a), is necessary.



A further natural condition to require is:

() Ais a flat R-module.
(This is automatic when m = 1.) It seems reasonable to ask whether (a) plus (b) imply
that A = RI9. For m = 1 and d = 2 this follows from a result of Sathaye [S], using
{[BCW2|. In the general case it has been shown by Asanuma ([A], cf. also [BS]) that
Aldl = Rl4+4] (R-glgebra isomorphism) for some ¢ > 0. Asanuma further shows that, in
characteristic p > 0, one may need ¢ > 0 here.

Further discussion of this problem is given below in section IV, Linearization of families.

Automorphisms. The group
GAa(€)

of polynomial automorphisms of €”, is called the affinc Cremona group. It contains
the groups of lincar automorphisms, GL,(C), of translations, = C", and of affine linear
automorphisms, v

Afn(€) = GL,(C)x C".
For n = 1 we have GA4,(C) = Afi(C). For rn > 2 there are many essentially non-linear
automorphisms. A natural source is the (non-linear) triangular group, BA,(C), consisting
of automorphisms of the form

(z1y.--y2n) = (2], ..., 20)

2! = aiz; + fi(Z1y- -, %iz1)
where a; € CX and f; € Clzy,...,%i-1] ( =1,...,n). Though BA,(C}, unlike A£,(C),
is infinite dimensional, it is a solvable group and reasonably tractable for calculation. Its
elements are sometimes called Jonquieres transformations.

The Generation Gap. Is GA,(C) generated by Af,(C) and BA,(C)?

For n = 2 we have an affirmative answer.

THEOREM (Jung-Van der Kulk). GA3(C) is the amalgamated free product of its sub-
groups Afz(C) and BA;(C).

Actually this is Jung’s theorem [J]; Van der Kulk proved the analogue in characteristic
p [VAK)]. For a proof in the above form see [N] or [W].

For n > 3 the Generation Gap remains an open problem; some experts suspect a neg-
ative answer. On the other hand Marilena Pittaluga has affirmed Lie algebra [Pil] and
topological [Pi3] analogues of the question.

Group Actions. Let G be an algebraic group acting (algebraically) on C*. Such an
action corresponds to an (“algebraic”) homomorphism

p: G = GA(C),



a “non-linesr representation”. Linearizing such an action means finding global coordinates
on C" relative to which G acts linearly; or, equivalently, linearizing means conjugating
p(G) (in GAL(C)) into GL,(C). A first requirement for this is that G have a fixed point,
i.e. that p(Q@) be conjugate to a sdbgroup of GAY(C), the stabilizer of the origin. We have

GAY(C) = GL,(C) x GAL(T)

where f € GAL(C) iff £(0) =0 and f'(0) = Id.

Translations, lacking fixed points, can’t be linearized. In fact there are simple actions
of &, which cannot even be made affine linear. For example, given any f(z) € C|z}, &,
acts on the plane by ¢ : (z,y) — (z,y + tf(z)). In fact it can be deduced from the Jung-
Van der Kulk Theorem that every action of &, on €? is conjugate to one of this type.
This fact tempts one to conjecture perhaps that actions of unipotent groups on €” can
be triangularized, i.c. conjugated into BA,(C). This would be a kind of non-linear Lie-
Kolchin Theorem. However such is not the case; in [B1] one finds a non-triangularizable
action of 6, on C3.

Every group with non-tnvm.l unipotent radical admits a non-hnea.nuble action on some
C". On the other hand we have the:

KAMBAYASHI CONJECTURE ([K]|). Every action of a reductive group on €™ can be
linearized.

Though many experts are skeptical about this conjecture, it is now the focus of much
active research, and there are many partial results which support it; we discuss some of
them below. First a remark to put some perspective on the conjecture.

REMARK: Suppose that for some group G # {1} we can linearize all actions of G on
affine spaces. Then the Cancellation Theorem holds (in all dimensions). For suppose that
X x €™ = €¥", After increasing n if necessary we can assume that G admits a Linear
action on C" so that (") = {0}. (For example use a direct sum of copies of a non-trivial
irreducible G-representation.) Then let G act on X x C™ using the trivial action on X. We
then have (X x €)% = X x {0} = X. On the other hand, interpreting this as a G-action
on €47, it is, by assumption, linearizable, so its fixed points form a linear variety, whence
X is linear.

It is thus tempting to try to obtain Cancellation by showing that one can Linearize affine
space actions of say G = G, (if one likes tori), or G = {11} if one likes finite groups, or
G = SL3(C) if one likes connected semi-simple groups.

Following is a partial list of recent results (cf. [B3] and the references there). We consider
a reductive group G acting cn C".

Fized points exist in the following cases.

(a) G is a finite p-group. (Shafarevich, cf. [B-B|, or Smith Theory). (See [PR] for
more general finite groups.)



(6) G is a torus (Bialynicki-Birula [B-B]).

{¢) G = SL3(C) and there are no 3-dimensional orbits (Panyushev [P]).
{d) G=SL3(C) and n < T (Kraft).

{¢) dm(C"*/G) < 1 (Kraft-Luna).

Lincarszation is possible in the following cases.

(a) G is a torus with an orbit of codimension < 1 (Bialynicki-Birula [B-B}).

(b) G is connected semi-simple and n < 4 (n = 1: trivial; n = 2: Corollary of Jung-
Van der Kulk Theorem; n = 3: Kraft-Popov [KP}; n = 4: Panyushev {P]).

(¢) If every closed orbit is a point thenr €" = (C")¢ x V where V is a lincar represen-
tation ([BH]). The action of G is linearizable iff the stably linear variety (C")¢ is
linear (Cancellation), e.g. if dim(C"%) < 2 (Fujita’s Theorem).

(d) An action F : G x € — €" is given by an n-tuple (F},...,F,) of polynomials
in n variables with coefficients in the affine algebra of G. Thus we can define the
polynomial degree, deg(F) = max; deg(F;) of the action. Jurkiewicz [JJ] has shown
that if G is a diagonalizable group then all quadratic actions {deg(F) < 2) of G on
C” are linearizable.

The first case left open by (a) concerns G, actions on C®. Kraft has gone quite far
toward proving that these actions are linearizable. Kraft and Schwartz have also obtained
strong information on actions for which dim(C"/G) < 1.

G-Varieties. Let G be an algebraic group. By a G-variety we understand an (affine)
variety X equipped with a G-action. We call it a linear G-variety if X is G-isomorphic
to some C" with a linear G-action, and stably linear if X x Y is linear for some linear G-
variety Y. The “Equivariant Cancellation Problem” asks whether stably linear G-varieties
are linear. Similarly one can formalate equivarient versions of essentially all of the problems
discussed above.

Algebraically, a G-variety corresponds to an affine C-algebra A on which G acts (ratio-
nally) as algebra automorphisms. We call 4 a € — G-dlgebra. If A — B is a morphism of
C — G-algebras we call B an A —~ G-algebra. There are various senses in which B might be
“linear™ over A. -

For any finite dimensional (rational) € — G-module V put S4(V) = A ®c Sym¢(V).
Such an A — G-algebra is said to be linear. An A — G-algebra B is stably linear if B®, C
is linear for mome linear A — G-algebra 0. We call B a sector bundle A — G-algedra if
B = Sym , (P) for some finitely generated projective A — G-module P.



IV. LINEARIZATION OF FAMILIES

Suppose that 4 (and B) are R — G-algebras where R is a € — G-algebra with trivial
G-action. Then for each p € Spec(R) we have the localized morphism A, — B, of R, — G-
algebras, and the fiber morphism A(p) — B(p) of R(p)—G-algebras, where R(p) = R, /pR,,
A(p) = R(p)®R A, etc. We ask here whether linearity properties locally, or fiberwise, imply
global linearity properties.

For localization we have the best we could hope for.

THEOREM ([BS]). If, for all p € Spec(R), By is a vector bundle A, ~ G-algebra then B
is a vector bundle A — G-algebra.

This is proved by the methods of [BCW2|, which treats the non-equivariant case.

Effective treatment of algebras with linear fibers was pioneered, in the non-equivariant
case, by Asanuma {A]. Asanuma’s methods and results are generalized to the equivariant
setting in {B3]. The following concept emerges as being central. We call B an Asanuma
A—G-algebraif there is a finitely generated projective B— G-module P such that Symg (P}
is a linear A — G-algebra. This and the preceding notions are related as follows:

linear = stably linear

Y Y

vector bundle =  Asanuma.

Moreover if A is a (stably) linear C — G-algebra, or even a retract of a linear € — G-algebra,
then: Asanuma @[\sre‘ctto bundle ¢ stably linear.

THEOREM ([B8]). Let A — B be a morphism of affine R — G-algebras. Assume that B is
A-flat. Then B is an Asanuma A — G-algebra iff, for all p € Spec(R), B(p) is an Asanuma
A(p) — G-algebra.

Assuming that B is A-flat with linear fibres, we might optimistically want to conclude
vhat B is actually linear, not just Asanuma. First there is a tangent bundle obstruction
+o this; when A is not regular this obstruction can be non-trivial and even forbid B from
t.eing stably a vector bundle A — G-algebra. When the tangent bundle obstruction is
:rivial (say B is “A — G-parallelizable”) then there are still examples of Asanuma [A] in
“haracteristic p > 0 to show that B is only stably linear, not linear. Such examples are
et known in characteristic 0. Moreover Sathaye [S] has shown (in characteristic 0) that
=« flat family of planes over a PID is globally a plane.
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Valuations on Rings and Simple Algebras

H.H. BRUNGS

Department of Mathematics ,‘ University of Alberta, Edmonton, Canada

Rings that can be considered as noncommutative valuation rings occur as coordinate rings of
Hjelmslev planes ([17]), in the construction of division rings that are not crossed products ([1], {16}
or in which ordered groups ([23]) or enveloping algebras ([9]) can be embedded, or as components
in structure theorems for certain rings ([24]). Noncommutative valuation rings were also used in
the investigation of the reduced Whitehead group SK;(A) of a division algebra A ([25]).

Here we want to discuss three aspects of noncommutative valuation theory. In the first
section we consider the extension problem, then in a second part report on some results about
the structure of complete discrete rank one valuation rings and higher derivations, and finally we
consider ordered groups associated with noncommutative valuation rings and the semigroups of
values for right invariant right chain domains.

1. The extension problem.

A valuation v on a commutative field K is a mapping from K* = K\{0} onto an ordered

group G that satisfies the following two conditions:
i) v(ab) = v(a) - v(b) and
ii) v(a +b) > min{v(a),v(b)} for any a,b€ K*.

If F D> K is any extension field of K then this mapping v can be extended to a valuation
of F. This also means that there exists a valuation ring B of F with BN K = V, the valuation
ring V = {a € K | v{a) > v(1)} of v in K. Here, a subring B of F is called a valuation ring of F if
a € F\B implies a! € B, and we say that such a ring B is an extensionof Vin Fif BN K = V.

If, in addition, F is algebraic over K then the intersection of all extensions of V in F is equal
to the integral closure of V in F and if F is Galois over K then {o(B) [¢ € G(F | K)} is exactly
the set of extensions of V in F, where B is one of these extensions and G(F | K) is the Galois
group of F over K ([15]).

Replacing in the above discussion the fields by division rings one obtains immediately the
notion of a valuation on a division ring, say D, and observes that the corresponding valuation ring
B = {a € D* | v(a) > 1} satisfies the following two conditions:

T) z € D\B implies ™! € B, i.e., B is a total subring of D.
I} dBd™! = B for all 0 # d € D; i.e., B is an invariant subring of D.

Conversely, every total invariant subring B of D defines an ordered group G = {aB | 0 #
@ € D} with aBbB = abB as operation and eB < B if and only if aB D bB as order. The

corresponding valuation v is then simply given by v(e} = aB.
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However, the commutative results cited above do not carry over: If Z, is the valuation ring
of the p-adic valuation in the ra.tional; Q and D = H is the division ring of quarternions over @
then there does not exist an invariant total subring B of H with BN Q = Z, for p a prime # 2.
Otherwise, B/J(B) is .a division algebra finite dimensional over Z,, hence commutative. But B
contains ¢ and j € H with ¢ = —ji # ji-modulo J(B), where J(B) is the maximal ideal in B.
We observe that the last argumient also showed that Z, has no total extension in H.

The following result describes thé condition under which a valuation ring V' in the center has

an invariant total extension (30)).

THEOREM 1. A valuation ring V of the center K of a finite dimensional division algebra D has
- ah invariant total extension B in D if and only if B has a unique extension in every subfield F

with- K C FC'D.

It follows that a valuation ring V in K has eitker no invariant total extension or exactly one.
The last case dcgpx; foff example if we consider the 2-adic valuation of @ which can be extended
to H or in the case where V is a rank 1 complete valuation of K.

Again; iet D be a division algebra of dimension n? over its center X and let V be a valuation
ring of K. With B = {B{'B totalin D and BN K =AV) we denote the set of all total extensions
of V in D. If V has rank 1 then every total extension is also invariant. However, the following
example shows that V can have non-invariant total extensions if the rank of V' is greater or equal
to two. . . v

Let V; , V2 be the two extensions in €(s) of Zs, the valuation ring of the 5-adic valuation in Q,
the field of rationals. Let o be the nontrivial automorphism of (i), i.e., conjugation, and denote
by R = Q(s)[[t, 0]} = {i t"a, | an € Q(t)} the skew power series ring with coefficients in (i) and
at = ta° defining the nomltiplication, a € Q). Then D, the skew field of quotients of R, is the
ring of skew Laurent series and K = @Q((t?)) is the center of D with [D : K} = 4. The power series
ring W = @{[¢?]] contains the subring V = {J" ¢:it¥ € W, go € Zs} which has the two extensions
B; = {it"aﬂ € R|ao € V;}, i=1,2. The rings B; are total subrings of D with Bin K - v,
but tBlg" = B3, i.e., they are not invariant. »

One can prove the following results about the set 3 ([5])

THEOREM 2. LetV be a valuation ring of K, tfle center of the division algebra D with [D: K| =

n?. Then any two total extensions of V in D are conjugate in D and their number is at most n.

Essential for the proof of this result is the existence of an invariant total subring R of D

which contains all the total extensions 'B.' of V and is minimal with this property and # D



