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Preface

Probability theory is a branch of mathematics dealing with chance phenomena
_and has clearly discernible links with the real world.. The origins of the sub-
ject; generally attributed to investigations by the renowned french mathe-
matician Fermat of problems posed by a gambling contemporary to Pascal,
have been pushed back a century earlier to the italian mathematicians
Cardano and Tartaglia about 1570 (Ore, 1953). Results as significant as the
Bernoulli weak law of large numbers appeared as early as 1713, although its
counterpart, the Borel strong law of large numbers, did not emerge until 1909.
Central limit theorems and conditional probabilities were already being
investigated in the eighteenth century, but the first serious attempts to grapple
with the logical foundations of probability seem to be Keynes (1921), von
Mises (1928; 1931), and Kolmogorov (1933). ‘ _

An axiomatic mold and measure-theoretic framework for probability
theory was furnished by Kolmogorov. In this so-called objective or measure-
theoretic approach, definitions and axioms are so chosen that the empirical
realization of an event is thé outcome of a not completely determined physigal
experiment—an experiment which is at least conceptually capable of indefi-
nite repetition (this notion is due to von Mises). The concrete or intuitive
counterpart of the probablhty of an event is a long run or hmmng frequency
of the corresponding outcome.

In contradistinction to the objective approach —where typical realizations
of events might be: a coin falls heads, more than 50 cars reach a busy inter-
section during a specified period, a continuously burning light bulb fails
within 1000 hours—the subjective approach to probability advocated by
Keynes is designed to encompass realizations such as: it will rain tomorrow,
life exists on the planet Saturn, the Iliad and the Odyssey were written by the

“same author—despite the fact that the experiments in question are clearly
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xii Preface

unrepeatable. Here the empirical counterpart of probability is degree or
intensity of belief.

It is tempting to try to define probablllty as a limit of frequencies (as
advocated by von Mises) rather than as a real number between zero and one
satisfying certain postulates (as in the objective approach). Unfortunately,
incorporation of repeatability as a postulate (von Mises’ “randomness
axiom”) complicates matters while simultaneously circumscribing the notion
of an event. Thus, the probability of the occurrence infinitely often of some
particular event in an infinite seqience of repetitions of an experiment—
which is of considerable interest in the Kolmogorov schema—is proscribed in
(the 1964 rendition of) the von Mises approach (1931). Possibly for these
reasons, the frequency approach appears to have lost out to the measure-
theoretic. It should be pointed out, however, that justification of the measure-
theoretic approach via the Borel strong law of large numbers is circular in
that the convergence of the observed frequency of an event to its theoretically
deﬁned probability (as the number of repetitions increases) is not pointwise
but can only be defined in terms of the concept being justlﬁed viz., probability.
If, however, one is willing to ascribe an intuitive meaning to the notion of
probab1hty one (hence also, probability zero) then the probability p of any
intermediate value can be interpreted in this fashiod.- =

A number of axiomatizations for subjective probability have appeared
since Keynes with no single approach dominating. Perhaps the greatest
influence of subjective probability is outside the realm of prebability theory
proper and rather in the recent emergence of the Bayesian school of statistics.

The concern of this' book is with the measure-theoretic foundations of
probability theory and (a portion of) the body of laws and theorems that
emerge thereform. In the 45 years since the appearance of von Mises” and
Kolmogorov’s Wt{rks on the foundations of probability, the theory itself has
expanded at an explosﬁle pace. Déspite this burgeoning, or perhaps because
of the very extent thbrle only the topics of mdependence interchangeability,
and ‘martingales will Bevtreated here. Thus, such 1mportant concepts as
Markov and stationary ‘$rocesses will not even be defined, although the
special cases of sums of independent random variables and interchangea\le
random variables will be dealt with extensively. Likewise, continuous param-
eter stochastic processes, although alluded to, will not be discussed. Indeed,
the time seems propitious for the appearance of a book devoted solely to such
processes and presupposing famxhanty with a mgmﬁcant portion of the
material contained here. .

Particular emphasis is placed in“this book on stopping times—on the one
one hand, as tools in proving theorems, and on the other, as objects of interest
in themselves. Apropos-of the. latter, randomly stopped sums, optimal
stopping problems, and limit distributions of sequences of stopping rules
(ie., finite stopping times) are of spetial interest. Wald’s equation and its
second-moment analogue, in turn, show the usefulness of such stopped sums
in renewal theory and elsewhere in probability. Martingales provide a
natural vehicle.for stopping times, but a formal treatment of the latter cannot
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await development of the former. Thus, stopping times and, in particular,a
sequence of copies of a fixed stopping rule appear as early as Chapter 5,
thereby facilitating discussion of the limiting behavior of random walks. .

Many of the proofs given and a few of the results are new. Occasionally, a
classical notion is looked at through new lenses (e.g., reformulation of the
Lindeberg condition). Examples, sprinkled throughout, are used in various
guises; to extend theory, to iilustrate a theorem that has just appeared, to
obtain a classical result from one recently proven.

A novel feature is the attempt to intertwine measure and probability
rather than, as is customary, set up between them a sharp demarcation. It is
surprising how much probability can be developed (Chapters 2, 3) without
even a mention of integration. A number of topics treated later in generality
are foreshadowed in the very tractable binomial case of Chapter 2.

This book is intended to serve as a graduate text in probability theory. No
knowledge of measure or probability is presupposed, although it is recognized
that most students will have been exposed to at least an elementary treatment
of the latter. The former is confined for the most part to Chapters 1, 4, 6, with
convergence appearing in Section 3.3 (i.e., Section 3 of Chapter 3).! Readers
familiar with measure theory can plunge into Chapter 5 after reading Section
3.2 and portions of Sectiong 3.1, 3.3, 4.2, 4.3 In any case, Chapter 2 and also
Section 3.4 can be omitted without affecting subsequent developments.

Martingales are introduced in Section 7.4, wheré the upward case is
treated and then developed more generally in Chapter 11. Interchangeable
random variables are discussed primarily in Sections 7.3 and 9.2. Apropos
of terminology, “interchangeable” is far more indicative of the underlying
property than the current “exchangeable,” which seems to be a too literal
rendition of the french word “échangeable.” '

A one-year course presupposing measure theory can be built around
Chapters §, 7, 8,9, 10, 11, 12. ’

Our warm thanks and appreciation go to Mary Daughaday and Beatrice
Williams for their expert typing of the manuscript.
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Classes of Sets, Measures, and
Probability Spaces

1.1 Sets and Set Operations

A set in the words of Georg Cantor, the founder of modern set theory, is a

rcollection into a whole of definite, well-distinguished objects of our perception
or thought, The objects are called elements and the set is the aggregate of
theése elements. It is very convenient to extend this notion and also envisage a
set devoid of elements, a so-called empty set, and this will be denoted by (.
Each element of a set appears only 6nce therein and its order of appearance
within the set is irrelevant. A set whose elements are themselves sets will be
called a class.

Examples of sets are (i) the set of positive integers denoted by either
{1,2,...} or {w: w is a positive integer} and (ii) the closed interval with end
points a and b benoted by either {w:a < w < b} or [a, b]. Analogously, the
open interval with end points a and b is denoted by {w:a < w < b}.or (q, b),
while (a, b] and [a, b) are designations for {w:a < v < b}and {w:a < w < b}
respectively. o

The statement that @ € 4 means that  is an element of the set 4 and
analogously the assertion @ ¢ A means that w is not an element of the set 4 or
altérnatively that w does not belong tc 4. If A and B are sets and every
element of A is likewise an element of B, this situation is depicted by writing
A < Bor B > A, and in such a case the set A is said to be a subset of B or
contained in B. If both 4 < Band B < A, then A and B contain exactly the
same elements and are said to be equal, denoted by A = B. Note that for
everyset A, J < A c A

A set A is termed countable if there exists a one-to-one correspondence
between (the elements of) 4 and (those of) some subset B of the set of all
positive integers. If, in this correspondence, B = {1, 2, ..., n}, then A is called
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a finite set (with n elements). It is natural to consider J as a finite set (with
zero elements). A set'A which is not countable is called uncountable or
nondenumerable. ‘

If A and B are two sets, the difference 4 — B is the set of all elements of 4
which do not belong to B; the intersection 4 N Bor 4 - B or simply AB is the
set of all elements belonging to both 4 and B; the union A U B is the set of all
elements belonging to either 4 or B (or both); and the symmetric difference
A A Bis the set of all elements which belong to 4 or B but not both. Note that -

AVA=4, AnA=A, A-A=g, A-B=A4-(4B)c A4,
" AuUB=BUA>A>AB=BA, AAB=(4-B)u(B- A).

Union, intersection, difference, and symmetric difference are termed set
operations. ) .
If A, B, C are sets and several set operations are indicated, it is, strictly
__speaking, necessary to indicate via parentheses which operations are to be
performed first. However, such specification is frequently unnecessary. For
instance, (A U B) U C = A U (B U C) and so this double union is inde-
.pendent of order and may be designated simply by 4 U B U C. Analogously,

(AB)C = A(BC) = ABC, (AAB)'AC=A;A(BA.C)Y= AABAC,
LA(Bu C)= AB U AC, A(BAC) = ABA AC.

If A is a nonempty set whose elements A may be envisaged as tags or labels,
{A;: A€ A} is a nonempty class of sets. The intersection () » 4, (resp. union
(Jaea 43) is defined to be the set of all elements which belong to A, for &ll
A€ A (resp. for some A € A). Apropos of order of carrying out set operations,
if » denotes any one of U, N, —, A, for any set 4 it follows from the definitions
that

UAAt_Ar—v(U‘AA)t’A, As U&:A:.(UAI);

AeA - AeA ~ 2AeA lgA
ﬂAAtA'=(ﬂAA)tA, Asx hAl#At(ﬂAl).
) leA \deA C deA ’ AEA
Then ‘ A
A"‘ UA1= m(A—'AA), A—‘ ﬂAl= U(A—Al)'
AeA AeA leA l.eA

For any sequence {A,, n = 1} of sets, define.

h_r_n_A,,=U ﬂAln TﬁﬁA,:ﬂ UAk

n—© n=1k=n n-+o n=1Kk=n
and note that, employing the abbreviation i.0. to designate “infinitely often,”

[im A, = {w: w € A, for infinitely many n} = {&: w € 4,,1.0.}

. . : ey
lim A, = {w: w e A, for all but a finite number of indices n}.

n—"x



1.1 Sets and Set Operations 3

To prove, for example, the first relation, let 4 = {w:we A4,, i.o.}. Then
w e A iff for every positive integer m, there exists n > m such that we 4,,
that is, iff for every positive integerm,w € | Ji%, 4,i€. ifw e ﬂ,‘:; 1t Uncm Ay

In view of (1), lim A4, < [im 4,, but these two sets need not be equal
(Exercise 3). Iflim 4, = im 4, = A (say), 4 is called the limit of the sequence
A,; this situation is depicted by writing lim 4, = A or 4, 4. If 4,
Ay < --- (resp. 4, > A, > ---) the sequence A, is said to be increasing
(resp. decreasing). In either case, {A4,, n > 1} is called monotone.

Palpably, for every monotone sequence 4,, lim,. ,, 4, exists; in fact, if
{A,} is increasing, lim,., A, = U,‘:‘;, A,, while if {4,} is decreasing,
lim,. , 4, = [ )2, 4,. Consequently, for any sequence of sets A,,

“EA” = lim U Al’

n— o n—o k=n

limA, = lim () 4,.

n— o n—=o k=n

EXERCISEs 1.1

1. Prove (i) if A, is countable, n > 1,s01is { 1 Au (i1) if A is uncountable and B o 4,
then B is uncountable

2. Show that | 2., [0, n/(n + 1)) = [0, 1), N, (0, 1/n) = &. _

3. Prove that lim,.q 4, < im ., 4,. Specify lim A, and lim A, when A4;; = B,
Ay =Cj=12....

4. Verify that 2., 4, = lim,., {J} 4;and 2, 4, = lim,_, ()}, 4;. Moreover,
if {4,, n > 1} is a sequence of disjoint sets, i.e., 4;4; = &, # j, then
o lim ) 4; = &.
. n—a j=n
5. Prove that [im,(4, v B,) = lim, 4, u lim, B, and lim, 4, B, = lim, A, kim, B,.-
Moreover, lim A, = A and lim B, = B imply lim, (4, v B,) = A U Band
lim 4,B, = 4B. '

6. Demonstrate thatif Bisa countable setand B, = {(b,. ..,b):b;eBforl <i<nj,
then B, is countable, n > 1.

7. Prove that the set S consisting of all infinite sequences with entries 0 or 1 is non-
denumerable and conclude that the set of real numbers in [0, 1] or any nondegenerate
interval is nondenumerable. Hint: If S were countable, ie., S = {s,,n > 1} where
Sp = (Xp3. Xp3. .. then (1 — x;5, 1 — x35,...,1 — x,,,...) would be an infinite
sequence of zeros and ones not in S:

8. If a, is a sequence of real numbers, 0 < a,°< o, prove that

Uwar=oswa) o (") o ()]

9. For any sequence of sets {4,,n > 1}, define B= 4,, B,,, =B,AA4,,,,n>1.
* Prove that lim, B, exists iff lim A4, exists and is empty.
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1.2 Spaces and Indicators

Aspace Qis an arbitrary, nonempty set and is usually postulated as a reference

or point of departure for further discussion and investigation. Its elements are

referred to as points (of the space) and will be denoted generlcally By w. Thus
= {w:weQ}.

For any reference space €, the complement A° of a subset 4 of Q is defined
by A° = Q — A and the indicator I , of 4 = Q is a function defined on Q by

Idw)y=1 forweA, I(w) =0 forwe A"

Similarly, for any real function f on Q and real constants a, b, I, ;<)
signifies the indicator of the set {w:a < f(w) < b}.
For any subsets 4, B of Q
Ac B iff 4° o B,
(A°) = A, Au A =9, AA =0, I,.=1-1,
A"-B=ABC, IASIB IHACB, IAUBSIA+18’
with the last inequality becoming an equality forall w if AB = (J.Let Abean

arbitrary set and {4;, A€ A} a class of subsets of Q. It is convenient to adopt
the conventions

U4,=a, NA=Q

ie@ ke @

Moreover,

(UAA)C= A% (ﬂAz)c= U 45,

AeA AeA AeA AeA
Frgoaaa=infl ., Iy, 4, =suply,,.
el\ AeA

Ifd;-A, = ford, A e Aand A # A, thesets 4, are called disjoint. A class of
disjoint sets will be referred to as a disjoint class.

if{A,, n > 1} is a sequence of subsets of Q, then {I,, n > 1} is a sequence
of functions on Q with values 0 or 1 and

Liga, = limI,, I, = limi,.
n->w n—o

Moreover,

Iop a, 5214.- )
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Equality holds in (1) iff {4, n > 1} is a disjoint class. The following identity
(2) is a refinement of the finite counterpart of (1): For 4, = Q1 < i < n, set

n
=ZIA;" S, = ) Z IAJI"J'Z"""
1 t<ji<ja<n :
Sy = : Z IAJ,AJZ'"A;,, = IA]A}'“A,.'

15j1 <~ <jnsn

Then
IuvllAj=sl’SZ+S3_"'+(—1)“_IS". (2)

In proof of (2), if for some w € Q, Iy . () = 0, clearly sdw)=0,1<k<n
whence (2) obtains. On the other hand, if ur4,(®) = 1,then w € 4;for at jeast
one j, 1 < j < n. Suppose that w belongs to exactly m of the sets Al, ey A,
Then sy(@) =m, s)(@)=(3),...,5,(@0) =1, 5p4,(0) = = s,(w) =0
whence :

si—Sy+ - H (=1 s, =m— (';) +---+(—l)"'“‘(:) =1 =‘Ik;“,.

EXERcises 1.2
1. Verify that
AAB=A°AB, C=AAB iffA=BAC,

DA-ADB»C D(AaAB,.)'
1 1 1

ﬁA,AﬁB.cﬁ<A,AB,>.

2 Prove that (lm,_., 4,)° = lim,_,, A4S and( m,., A,)° = lim,., AS.
3. Prove that Iz, = him l 4, and that 1“,,, 4, = lim I, whenever either side exists.

4. If A, = @, n > 1,show that

Ine 4, =maxl, , Ins 4, =minl, .
. nz1 nx1

5 Iff sa real functionon Q, thenf? = fiff fisan indicator of some subset of Q.

6 Apro‘pos of (2), prove that if B, is the set\of points belonging to exactly m(1 < m.< n)
of A;,”. ,A,, then

A\
1 1+ 2 ‘
e Yoo+ (" )sm+z—---+(-—1r-"(:)s.- Q)

7. If {f,, n = 0} 1s a sequence of real functions on Q withf, 1 foand 4, = {w: fhw) > ¢},
then 4, A,,, and lim 4. = A4,.



6 1 Classes of Sets. Measures, and Probability Spaces

8. If {f,,n = 0} is a sequence of real functions with f, 1 f and. g, = foli< . < for

some real constant a < b, then {g,,n > 1} is not necessarily increasing. However,
ifforn>0

Jo= falassasn + aly, <o + blis oy,
thenf, 1 /5.
9. If f, and f, are real functions on €, prove that for all real x and rational r

{w: filw) + fr{w) < x} = U fw: filw) <r}-{w: fi{lw) <x —r}

altr

1.3 o-Algebras, Measurable Spaces, and Product
Spaces

Let Q be a space.

Definition. A nonempty class ¢ of subsets of Q is an algebra if

i. A°e of whenever A€ o/,
ii. A, U A, eof whenever 4;e of,j = 1,2.

Moreover, « is a ¢-algebra if, in addition,

iii. ()i, A, €. whenever A, e/, n> 1.

Evidently, (ii) implies that for every positive integer n, U’; A;e of when- .
ever A;e .o/, | < j < n, while both (i) and (ii) entail A,4, e, if 4;e o,
Jj = 1,2,; also, since .o/ is nonempty, Qe o, 5 € of. Clearly, (iii) implies (ii)
by taking A, = A,, n > 2. Note that a g-algebra is closed under countable
intersections.

Definition. A nonempty class o of subsets of Q is a monotone class if lim A, € o/
for every monotone sequence 4, € o/, n > 1.

. Obviously, a o-algebra is a monotone class. Conversely, a monotone
algebra & (i.., a monotone class which is simultaneously an algebra) is a
o-algebra: For if A,e/, n> 1, then B, = J]_, Aje o, n > 1, whence -
U2y 4;=1lim, B,e «:

Let S be the class of all subsets of Q and T, = {&, Q}. Then Spand Ty, are
o-algebras and for any g-algebra U, of subsets of Q, Ty, « U < Sg,.

Definition. The minimal algebra &' (resp. s-algebra, monoione class) contain-
ing a nonempty class & of subsets of Q, is an algebra (resp. g-algebra, monotone
class) such that

i &8,



