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PREFACE

The NATO Advanced Study Institute on "Dynamics and Biogenesis of Membranes"
intended to provide an overview on both the structural and dynamic aspects of individual
membrane constituents as well as on the processes and mechanisms involved in the
assembly of these compounds into well organised biological membranes. Emphasis was
laid in particular on the mutual interactions between the proteins, lipids and their
glycosylated derivatives. The progressive increase in our knowledge of membrane
biogenesis is due in particular to the application of new techniques and approaches in
biophysics, genetics, biochemistry and molecular biology. In order to illustrate this and to
achieve an extensive overview and a broad perspective of this complex field, lecturers
originating from various disciplines contributed to the ASI. The cross fertilization of these
disciplines and the combination and integration of the new developments is reflected in the
present proceedings. B

Much progress has be#il made in recent years in the elucidation of the structure,
biosynthesis and functional properties of fatty acylated proteins and of compléx,
glycosylated lipids such as the glycosphingolipids and the glycosylated
phosphatidylinositols. Furthermore, the biosynthetic routes of glycosylated proteins, in
particular the topological aspects, have been studied in great detail. A substantial portion of
this information originated from studies of mutants and detailed overviews on these and
other important aspects of glycolipid and glycoprotein biogenesis are presented.

Mutual interactions between lipids and between lipids and proteins are the major stabilizing
forces responsible for the structure of biological membranes. The various physico-chemical
aspects of these interactions, including the possible occurrence of non-bilayer
configurations of membrane lipids, are presented and the implications of the data for both
membrane protein function as well as for protein insertion and protein translocation are
discussed in detail. ) ’ .

Another aspect of membrane biogenesis which has drawn much attention in the past decade
concerns the routes and mechanisms of intracellular traffic of membrane(fractions) and
individual membrane constituents. Continuous movement of membranous material is
essential for membrane repair, membrane multiplication during cell division, endo- and
exo-cytosis and various other intracellular events. In particular the mechanisms by which
proteins move through the cell and its membranes have been studied in great depth. A fair
number of reports and overviews, dealing with protein signalling, targeting, export,
translocation and insertion in a variety of biological systems, gives an impression of the
current state of affairs in this fast evolving area of research.

Utrecht, October 1989 ,

Jos A.F. Op den Kamp
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GLYCOLIPIDS - INTRACELLULAR MOVEMENT AND STORAGE DISEASES

K. Sandhoff and P. Leinekugel
Institut fir Organische Chemie

und Biochemie der Universitat Bonn
Gerhard-Domagk-Str. 1

5300 Bonn 1

FRGermany

Glycosphingolipids (GSL) are components of plasmamembranes of
animal cells. They are anchored in the cellular membrane by
their hydrophobic ceramide (N-acylsphingosine) moiety, while
the hydrophilic mono- or oligosaccharide part ' faces the
extracellular space. Together with glycoproteins and glycos-
aminoglycanes glycosphingolipids form the glycocalix of cell
surfaces. The GSL-patterns are characteristic for individual
cell types, stages of differentiation and oncogenic transfor-
mation (Hakomori 1980; van Echten and Sandhoff, 1989). Though
some of the sialic acid containing GSL have been identified as
binding sites for toxins and viruses (Yamakawa and Nagai, 1978;
Markwell et al., 1981), their physiological functions remain
obscure. The structure of about 100 GSL could be elucidated
thus far. Sialic acid-containing GSL, called gangliosides, are
typical lipids of neuronal surfaces and are predominant in the
grey matter (Lowden and Wolfe, 1964; Derry and Wolfe, 1967).
Sulfatide and galactosylceramide as main components of myelin
prevail on oligodendrocytes while glycolipids of the globo-
series predominate on fibroblasts. Any disorder in metabolism
of GSL would mainly affect those tissues in which the cor-
respondent GSL is concentrated.

In order to get information about localization, intracellular
movement and metabolism of GSL in cultured cells, different
derivatives such as spin-, radio-, fluorescent- and biotin-
labelled GSL-species, especially of gangliosides, were synthe-
sized (Schwarzmann and Sandhoff, 1987). Studies with exogenous
spin-labelled gangliosides in cell culture showed that they are
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slowly incorporated into the plasma membrane, where they obtain
a position which is similar to that of endogenous gangliosides

{Sschwarzmann et al., 1983, 1984).

Feeding and metabolic experiments with different derivatives of
gangliosides show that they participate in intracellular
membrane flow after insertion into the plasma membrane. They
may enter the 1lysosomal compartment to get degraded by the
sction of hydrolases, or, to a smaller extent, reach the Golgi,
wirere they can be used for the biosynthesis of more complex
GSL.. (Sonderfeld et al., 1985; Sandhoff et al., 1987). Experi-
ments with double labelled gangliosides indicate that those GSL
reaching the Golgi-complex are transported directly to this
cumpartment, without passing through lysosomes (Klein et al.,
1988). Direct glycosylation in the Golgi was observed with
gangliosides Guz, Gui1 and Gpia as well as with the synthetic
amides of OGmz and Gwui. Electron microscopy studies with
bpiotinylated ganglioside Gu: in fibroblasts support this view
(Schwarzmann et al., 1986). In contrast, when Farber disease
cells were fed with ganglioside Gus or normal cells with Gus-
amide respectively, no synthesis of more complex gangliosides
could be observed. This indicates that these GSL do not enter
the biosynthetic pathway even when reaching the Golgi complex
(Klein et al., 1987). However, due to the low activity of N-
avetylgalactosaminyl-transferase in Golgi vesicles from rat
tiver (Pohlentz et al., 1988; Iber et al., 1989) it cannot be
tuled out that reglycosylation of these GSL takes place very
slowly, below the detection limits of the procedures used. The
current understanding of intracellular routing of GSL is

summarized in figure 1.
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Fig. 1. Model of intracellular transport of exogenous ganglio-
sides in cultured cells (Sandhoff et al., 1988).

Biosynthesis of GSL starts with ceramide formation in the
endoplasmatic reticulum. Wether the synthesis of either
glucosylceramide or galactosylceramide also takes place in the
endoplasmatic reticulum (Suzuki et al., 1984) or at the
cytosolic side of the Golgi apparatus (Coste et al. 1985, 1986)
is a question which yet has to be clarified. All the other
glycosyl- and sialyltransferases involved in GSL-biosynthesis
are located in Golgi-cisternae. These membrane-bound enzymes
act by sequential addition of galactose, N-acetylgalactosamine
and sialic acid to the growing oligosaccharide chain, using the
corresponding sugar nucleotides. Inhibitors of sugar nucleotide
transport across the Golgi membrane such as tunicamycin, block
ganglioside biosynthesis (Yusuf et al., 1983). Competition
experiments using lactosylceramide, ganglioside Gus3 and
ganglioside Gps as substrates suggested that N-acetylgalac-
tosamine transfer in rat liver Golgi, leading to gangliosides
Gaz, Guz and Goz, respectively, is catalyzed by a single
enzyme. The same could be shown for the reaction leading to
gangliosides Guib, Gpia and Grip (Pohlentz et al., 1988). Very
recent studies proved Gai-, Gw:i- and Gpib-synthases to be



jdentical enzymes in rat liver Golgi (Iber et al., 1989), so.
that a new model for ganglioside biosynthesis, combining those

results, can be proposed (fig. 2).
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Fig. 2., Proposed model for ganglioside biosynthesis (Pohlentz
et al., 1988; Iber et al., 1989). In this model successive
transfer of N-acetylgalactosamine, galactose, and sialic acid
to lactosylceramide, Gus and Gpas (and possibly Grs) leading to
the asialo, a and b (and possibly c¢ series}) gangliosides is
catalyzed by the same set of glycosyltransferases.=———{gp ,
reactions not yet demonstrated in rat 1liver Golgi. oc——P»,
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Biosynthesis of glycosphingolipids is accompanied by an
intracellular vesicie—bound membrane flow. The growing molecule
is transported from the endoplasmatic reticulum through the
Golgi cisternae to the plasma membrane, following the principle
that individual biosynthetic steps correlate with compartmenta-
tion. Drugs affecting intracellular membrane flow or modulators
of the cytoskeleton have strong inhibitory effects on ganglio-
side biosynthesis in.murine cerebellar cells (van Echten and
Sandhoff, 1989). However, the regulation of ganglioside biosyn-



thesis is poorly understood. There is evidence, that ganglio-
side biosynthesis is wunder transcriptional control of the
respective glycosyltransferases: (Hashimoto et al., 1989 a, b;
Nakakuma et al., 1984). On the other hand, in vitro studies al-
low for an additional feedback control (Yusuf et. al., 1987).

GSL degradation takes place in the lysosome and is catalyzed by
exohydrolases, which remove the sugar residues in a stepwise
manner from the non-reducing end of the oligosaccharide chain
(Sandhoff and Conzelmann, 1984; Sandhoff et al., 1987) (fig.
3).
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Fig. 3. Degradatipn scheme of sphingolipids denoting metabolic
blocks of known diseases (Sandhoff and Christomanou, 1979).
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Any defect of one of these enzymes results in the accumulation
of the lipid compounds, which, due to their poor water solubi-
lity, precipitate within the lysosome, leading to progressive
storage, swelling and finally dysfunction and death of the
cells. The clinical symptoms of the resulting diseases depend
on the kind of affected tissue or cell type. Though the reason
for sphingolipidoses is simply an inherited defect of one
catabolic step, there is a great heterogeneity of the respec-
tive diéeases at the biochemical as well as at the clinical
level ' (for reviews, see, e.g. Conzelmann and Sandhoff, 1984,
Sandhoff et al. 1989).

In vitro analysis revealed that many of the lysosomal hydrola-
ses are stimulated by the action of sphingolipid activator
proteins (Conzelmann and Sandhoff, 1987 a, b). The function of
some activator proteins is to extract the 1lipid from the
membrane, forming a water—-soluble complex, which enables the
lysosomal enzyme to act upon its substrate. The Guz2 activator
protein is one of the best characterized lysosomal sphingolipid
binding proteins; it is a monomeric glycoprotein consisting of
one subunit containing 162 amino acids and one N-linked
oligosaccharide chain (Fiirst et al., 1989). This activator
protein forms a stoichiometric complex with ganglioside Guz and
its analogues, utilizing a hydrophobic binding site for the
geramide residue and a hydrophilic one for the N-acetylgalac-
tosamine .and sialic acid residues of ganglioside Guz . The whole
complex ié the substrate for the enzyme hexosaminidase A (Hex
A) (Sandhoff and Conzelmann, 1984).

Hexosaminidase A is composed of two subunits, a and B, each
possessing one catalytic site (Kytzia and Sandhoff, 1985). Only
the a subunit is able to degrade activator~bound ganglioside
Gu2 , explaining why patients with variant B: of Guz -gangliosi-
dosis accumulate ganglioside Gxz in spite of showing Hex A
activity against is synthetic substrate 4-methylumbelliferyl-g-
D-N-acetylglucosaminide. The Hex A of those patients carries a
point mutation in the a active site, the B-chain active site



;

being unaffected (Kytzia et al., 1983, 1985; Tanaka et al.,
1988). The model shown in Fig. 4 explains the biochemical
heterogeneinity of Gx:-gangliosidosis. Mutations in any of the
three polypeptides (a-subunit, B-subunit or activator protein)
would lead to a defect in Guxz-ganglioside catabolism, causing
accumulation of this lipid in neuronal tissues of the affected
patient.

Gz -ACTIVATOR

/}/ ) ﬁ )} Gy WesERTION Gz ACTIATOR -Gy i
d/ﬁ@éﬁ% R
=

AGTIVE HEX A&~ Gpyp -ACTIVATOR - Gy

Q

MEMBRANE / \ . PEGENERATION OF pROTEWS

Fig. 4 Model for the lysosomal catabolism of ganglioside Gu:
(Conzelmann and Sandhoff, 1979; Sandhoff and Conzelmann, 1984;
Conzelmann et al., 1982). Hexosaminidase A cannot attack
membrane-bound ganglioside Gz . Instead, the ganglioside is
extracted from the membrane by the activator protein and the
water-soluble activator/lipid complex is the substrate for the
enzymatic reaction. Of the two catalytic sites on hexosamini-
dase A, only the one on the a-subunit cleaves ganglioside Gugz.
The hexosaminidase precursor ("prohex A") is also fully active
on the activator/Gu: complex (Hasilik et al., 1982). After the
reaction the product, ganglioside Guas, is reinserted into the

.membrane and the activator protein is available for another .
round of catalysisg. ’

Other activator proteins and cofactors in GSL-catabolism have
been described. {(Conzelmann and Sandhoff 1987 b; d'Azzo et al.,



1982). In contrast to the Guz activator protein, the other pro-
teins examined thus far are less specific and their mechanism
of function is 1less clear. For example, the sulfatide-Gui
activator protein is able" to bind a variety of glyco- and
phospholipids (Conzelmann and Sandhoff, 1987 b). It has been
proposed that it acts as a kind of physiological detergent,
solubilizing the 1lipids that would otherwise not be accessible
to water-soluble hydrolases (Fischer and Jatzkewitz, 1978). The
sulfatide-Gys activator protein 1is formed by proteolytic
cleavagé of a large precursor protein (Furst et al., 1988).
Recently it has been shown that this precursor protein is
processed to four homologous proteins, the sulfatide activator
protein, an activator protein for glucosylceramidase (A
;ctivator) {Kleinschmidt et al., 1987), and two proteins with
unknown function, respectively (First et al., 1988; O'Brien et
al., 1988; Nakano et al., 1989). '

Allelic mutations affecting proteins involved in sphingolipid
degradation may have consequences on synthesis of mRNA,
formation of pre-pro-proteins, their intracellular targeting
and processing, catalytic activities and substrate gpecifities
of the mature enzymes, their stability against 1lysosomal
proteases, temperature and / or pH-changes (Scriver et al.,
1989). The biochemical heterogeneity is increased by the
possibility of alternate ‘'splicing of hn-mRNA transcripts
(Quintern et al., 1989), which was also observed in the case of
a- and f-chain mutations of hexosaminidase A (Ohno and Suzuki,
1988; Navon and Proia, 1989; Sandhoff et al., 1989).

However, the molecular analysis of iysqsomal storage diseases
at the protein or genomic levels so far could not explain the
frequentiy observed heterogeneity of clinical syndromes, such
as the occurrence of infantile, juvenilé‘énd adult forms.

In Gmz-gangliosidosis as in metachromatic 1leukodystrophy, a
disorder in sulfatide catabolism, these clinical forms show
small but consistent differences in the residual activities of
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the affected enzymes, hexosaminidase A and arylsulfatase A,

respectively (Conzelmann et al., 1983; Lee-Vaupel and Conzel-

mann, 1987). In order to understand the significance of varia-
tions in the lower range of residual enzyme acitivities for the

development of different clinical forms of a disease, a

hypothesis was proposed, based on model calculations performed
on the steady-state substrate concentration and the degradation
rate of the 1lipid substrate as a function of the residual

enzyme activity (Conzelmann and Sandhoff, 1983/84) (Fig. 5).
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Fig. 5. Steady state substrate concentration as a function of
enzyme concentration 4and activity (Conzelmann and Sandhoff,
1983/84). The model underlying’ this theoretical calculation
assumes influx of the substrate into a” compartment at a
constant rate (vi) and its subsequent utilization by the
enzyme. = [Sleq, stéady state concentration; ----- = theore-
tical threshold of enzyme avtivity; -—-- = critical threshold
value, taking limited solubility of substrate into account; .-
*~+ = turnover rate of substrate (flux rate)
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Measurements on the degradation rate of 1lipid substrates and
residual enzyme activities in cultured skin fibroblasts from
patients with different - clinical forms of metachromatic
leukodystrophy or Gu:-gangliosidosis, variant B, respectively,
could confirm this hypothesis (Conzelmann et al., 1988;
Leinekugel P., Michel S., Conzelmann, E., Sandhoff K. manu-
script in preparation). Supporting the proposed model, the
results show that variation of the enzyme activity lead within
a wide range only to changes in the steady state substrate
concentration but not to accumulation of substrate. However, if
the enzyme activity falls below a critical threshold, the
decrease of activity can no 1longer be compensated for by a
higher saturation of the enzyme, thus lysosomal storage of the
substrate occurs. Below this critical threshold, small diffe-
rences in residual enzyme activities have significant effects
on substrate accumulation. This may explain that patients with
small differences in the activities of the affected enzyme show
a wide variation in age of onset, progression and severity of
the disease. )
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