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PREFACE

Air pollutibn is a result of technological progress, and of human
activities, intensified by the demands of twentiethfcentury life-
styles, and given political, legal, and economic impetus by legis-
lation and its enforcement in the last'decade. Air pollution has
been s,cknowledgéd as a disquieting phenomenon, and a widespread
cmmnitmént has been made to control the problem. To be successful,
such a commitment requires application of' sound engineering practice,
economiés, and a spark of creativity. To succeed in controlling air
éollution regardless of its source, the engineer needs to be able to
manipulate the a.pprop:::iate technologies.

This.book addresses one of the major problems facing industry.
Analysis and recommendations are presemted in various prolhlem areas
By respective experts and stress practical aspects of pollution
control engineering as related to air quality. The éd.itors and
contributors identify the major elements of the industrial air pol-
. lution situation. Adverse environmental impact will, of course, be
dependent on the nature of a im.rticula.r business, its raw materials,
products, and processes.

From the large spectrum of technological possibilities, develop-
ment of techniques to contﬁ-ol air pollution from stationary sources
has received great impe"tus and Me rapid strides since enactment of
'feq.era.l and state air pollution laws. The threat of fine and plant
shutdown in addition to social re;ponsibilities have made manufac-
turing enterprises not only more cognizant of problems in this area
but have goaded them to action.

Recent international events have included sharp increases in
the pr{ces of essential fuels, creating the widely perceived "eneréy
crisis”™ which in turn has additionally exacerbated problems in air
pollution control. Cheaper, more abundant fuels such as coal do not
burn clean, so use of such fuels presents air pollution problems
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iv PREFACE

High priority and urgency have been assigned to vigorous programs
in air pollution control.

This handbook is intended as a further step in closing the gap
between knowledge and practice. Technological progress requires
contimial reexamination of ﬁriorities and experience. It is intended
for use by experts and novices; ehgineers, managers, and students
who are interested in learning the language, and as a reference for
those who are faced with air pollution problems from stationary
sources. The editors extend heartfelt thanks to their many friends
in industry who cooperated and helped in the publication of this
book.

Paul N. Cheremisinoff
Richard A. Young
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Chapter 24

PACKED TOWER AND ABSORPTION DESIGN

Mahesh V. Bhatia

Hooker Chemicals & Plastics Corp.
Grand Island, New York

Scrubbers used in air pollution control are available in s wide range
‘of types and sizes. They are used mainly to eliminate one or more
objectionable gaseous or particulate components from & gas stream.
Their principle of design is based on mass transfer (diffusion),
inertial impaction, or electrostatic attraction. _

- In mass transfer, gaseous components are dissolved in liguid.
When gas and liquid are brought into intimate contact, the concen-
_tration gradient is established between two phases, and diffusion
takes place. Objectionable components, highef in concentration in
the gaseous phase, are transferred to the liquid phase, having a
lowe:: concentration. During this diffusion process, solute is trans-
ferred in liquid with or without chemical reaction.

THEORY

When fluid passes over a solid surface, its velocity at the surface
of the solid is zero. The velocity of the fluid thus changes from
that in the bulk stream to the solid surface across which it is
flowing. The vélocity rises sharply in a zone between the interface
and a very small distance perpendicular to the solid interface.

This small zone is called the laminar region. The fluid in the bulk

609



610 | BHATIA

stream can be in the turbulent region. The ;v.one between the laminar
and turbulent regions is known as the transition or buffer region.

Intimate contact between gas and liquid is established in the
laminar region over solids known as packing. The laminar region
consists of stagnant gas and liquid films. As diffusing fluid passes
from the main stream, it has to pass through the main stream, buffer
zone, and laminar regions.

Diffusion through the laminar f£ilm is on a molecular scale and
is known as molecular diffusion. Molecules in gases move in random
directions, and as_they do so, they collide against each other. The
resultant distance is, therefore, very small; hence, molecular dif-
fusion is a slow process. - If, on the other hand, the temperature of
the .gas is higher, molecules travel at a higher velocity and can cover
larger distances, thereby mérea.sing the rate of diffusion. At lower’
pressure, there is a greater distance between molecules; this can also
increase the rate of diffusion.

The main concentration gradient is established-in the laminar
region, so the mechanism of gas absorption by diffusion is a molecu-
lar diffusion, ’

RATE OF DIFFUSION

At steady state, gas-gas molecular diffusion of component A from
position 1 to position 2 through stagnant nondiffusing component B
is given by

- DagPy

R P Ay A2 o ()
where

D,y ~ = diffusivity (em®/seéc or £t2/hr)

R = gas constant (82.06 cm® atm/g mole)
or 0.729 £t2 atm/1b mole)

P, = total pressure (atm)
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T = temperature (K or R) , .

PBM = log mean pressure of nondiffusing component B (atm)
Z8 = distance in direction of diffusion (cm or ft)

Py» Pp = partial pressure of A or B (atm)

Subsc‘}-ipts 1, 2 indicate position

Estimation of D

AB for Gases

The Hirschfelder-Bird-Spotz [1] relation to estimate DAB is

0.0009292 T/ 2[(1/M,) + (1/M5)1*/2
D -

AB ~ B 212 (KT /% )] (2)

In this formula, D, is in square centimeters per second and T is in

. degrees Kelvin; YA:B is the molecular sep’aratioh ap collision in ang-
stroms [= (YA + vB)/a]; M, and My are the molecular weights of com-
ponents A and B, respectively; €\B is the energy of molecular inter-
action in ergs [= (cAeB-)l/a]; k is Boltzmann's constant (1.38 x 10~16
ergs/K); and f(kT/eAB) is the collision function given in Fig. 24-1.
Values of ¢/k (K) and v () for common components are given in Table
2.1, . X _

For components for which values of e/k and y are not given, the
fo]lowing empirical relations are recommended:

e _ - .

£ = 0.7TT, | (3)
€ .
r= 1.92L, (5)

where T e’ T., and '.l‘m are the critical temperature, boiling point
temperature, and melting temperature, respectively, in degrees Kel-
vin; and

v = 11842 : _ (6)

where Vo is the molal volume given in cubic centimeters per gram mole
of liguid at the normal boiling point.
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FIG. 2k-1. Collision function £(kT/e,p).

For larger molecules, molal volume can be determined:as a sum-
mation of atomic volumt‘as. Values of atomic volumes can be obtained
from the literature, such as Perry's Chemical Engineer's Handbook

[4].

Diffusivity Coefficient in Liquids

By the Wilke correlation {2], diffusivity of components in liguids
is given by

,DAB = "TB? | (1)

where

T = temperature (°K)

bg = viscosity of solvent (cps)
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TABIE 24-1

613

Force Constants and Collision Diameters [2]

Gas e/k (K) Yo (angstroms)
(from viscosity) (from viscosity)

Air 97.0 3.617
Ammonisa 315 2.624
Argon 124.0 3,418
Benzene ho 5.270
COs 190 3,996
Co 110.3 3.590
CCl, 327 5.881
Diphenyl 600 6.223
Ethane 230 k.h18
Ethanol 391 L.L55
Ethyl ether 350 5. 4oL
Ethylene 205 4,232
Fluorocarbon F-12 288 5.110
Helium 6.03 2.70
n-Heptadecane 800 T.923
Hydroge 33.3 2.968
HCL 360 3.305
Iodine 550 4.982
Methane 136.5 3.882
Neon 35.7 2.80
Nitrobenzene 539 h.931
NO 119 3.7
Nitrogen 91.5 3.681
N=0 220 3.879
n-Octadecane 820 7.963
n-Octane 320 T.451
Oxygen 113.2 3.433
Propane A 25k 5,061
S0z 252 L.290
Water 363 2.655
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FIG. 24-2. (From Ref. 3, with permission of McGraw-Hill Book
Company . )

DAB = diffusivity of component A through solvent B
F = a function of the molecular volume of the solute

¢, as shown in Fig. 24-2, is a solvent cha.ra.cteri:stic, used as
parameter in Fig. 24-2, and is equal to 1.0, 0.82, and 0.T70 for
water, methanol, and benzene, respectively. For other solvents
where data are unavailable, ¢ may be assumed to be 0.9 [3]..

Example 1
[Estimate the diffusion coefficient between SO and air at 15

psia and 25°C (gas absorption of SO» by water is controlled by
resistances both in gas film and liquid film).

T ' ‘=254 275 = 298K
P =1%57=1.0205tm

e -
-—S-Qﬁiil = (0.326 x 0.846)1/2 = 0.525

From Fig. 24-1,
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Air 80z

e/x 97.0 252 (Teble 24-1)
o/x2 0.326  0.846

r (1) 3,617 4.290 (Table 24-1)
M 29 . 64

For o = 0.525, f(ff) =1.0 (See Fig. 24-1.)

| a 3.617 + 4,290 _
T30g-air 5 3.953

615

‘Using Eq. (2),

D . 0:0009292 x 298%/2[(1/29) + (1/64)]1/2

S0z-air 1.02(3.953)<(1.0) ‘
= 0,067 cm?/gec
Example 2 , ,

Estimate diffusivity of chlorine in water at 25°C and 1 atm
pressure.

T =273 +25=298K

REgo = 0.8937 cps
. '@ = molal volume of solute, Clo is k8.2 (from Table

~lasw o 2he2), solute characteristic for HgO = 1.0

Using Fig. -2,

P =2,1x 107
Using Eq. (7),

D= ;:% = 1.58 x 1075 cma/sec§

TABIE 24§
Atomic and Molecular Volumes [3]
Atomic volume Molacular volume

Carbon : © . 14.8 Ho 1.3
Hydrogen . 3.7 02 25.6
Chlorine 2.6 Ko 31.2

. Bromine



