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THEORETICAL, MECHANICS

CHAPTER 1
REST AND MOTION
INTRODUCTION

1. Uniformity of nature. If we place a stone in water, it will
sink to the bottom; if we place a cork in water, it will rise to
the top. These two statements will be admitted to be true not
only of stones and corks which have been seen to sink or rise in
water but of all stones and corks. Given a piece of stone which
has never been placed in water, we feel confident that if we place
it in water it will sink. What justification have we for supposing
that this new and untried piece of stone will sink in water? We
know that millions of pieces of stone have at different times been
placed in water; we know that not a single one of these has ever
been known to do anything but sink. From this we infer that
nature treats all pieces of stone alike when they are placed in
water, and so feel confident that a new and untried piece of stone
will be treated by the forces of nature in the same way as the
innumerable pieces of stone of which the behavior has been
tested, and hence that it will sink in water. This principle is
known as that of the wniformity of nature, what the forces of
nature have been found to do once, they will, under similar condi
tions, do again.

2. Laws of nature. The principle just stated amounts to say-
ing that the action of the forces of nature is governed by certain
laws; these we speak of as laws of nature. For instance, if it

has been found that every stone which has ever been placed in
1



2 REST AND MOTION

water has sunk to the bottom, then, as has already been said, the
principle of uniformity of nature leads us to suppose that every
stone which at any future time is placed in water will sink to the
bottom ; and we can then announce, as a law of nature, that any
stone, placed in water, will sink to the bottom.

That part of science which deals with the laws of nature is
called natural science. Natural science is divided into two parts,
experimental and theoretical. Ezperimental science tries to dis-
cover laws of nature by observing the action of the forces of
nature time after time. ZTheoretical science takes as its material
the laws of nature discovered by experimental science, and aims at
reducing them, if possible, to simpler forms, and then discovering
how to predict from these laws what the action of the forces of
nature will be in cases which have not actually been subjected to
the test of experiment. For example, experimental science dis-
covers that a stone sinks, that a cork floats, and a number of sim-
ilar laws. From these theoretical physics arrives at the simple laws
of nature which govern all phenomena of sinking or floating, and,
gbing further, shows how these laws enable us to predict, before
the experiment has been actually tried, whether a given body will
sink or float. For instance, experimental science cannot discover
whether a 50,000-ton ship will float or sink, because no 50,000-
ton ship exists with which to experiment. The naval architect,
relying on the uniformity of nature, on the laws of nature deter-
mined by experimental science, and on the method of handling
these laws taught by theoretical science, may build a 50,000-ton
ship with every confidence that it will behave in the way pre-
dicted by theoretical science.

3. The science of mechanics. The branch of science known
as mechanics deals with the motion of bodies in space, and with
the forces of nature which cause or tend to cause this motion.
The laws of nature which govern the action of these forces and the
motion of bodies have long been known, and were reduced to their
simplest form by Newton. Thus we may say that experimental
mechanics is a completed branch of science.
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The present book deals with theoretical mechanics. We start
from the laws supplied by experimental mechanies, and have to
discuss how these laws can be used to predict the motion of bodies,
— for instance, the falling of bodies to the ground, the firing of
projectiles, the motion of the earth and the planets round the sun.
An important class of problems which we shall have to discuss
will be those in which no motion takes place, the forces of nature
which tend to cause motion being so evenly balanced that no
motion occurs. Such problems are known as statical.

MortioN oF A PoINT

4. State of rest. Before we can reason about the motion of a
body we have to determine what is meant by a body being at
rest. In ordinary language we say that a train is at rest when the
cars are not moving over the rails. We know, however, that the
train,in common with the rest of the earth, is not actually at rest,
but moving round the sun with a great velocity. Again, a fly
crawling on the wall of a railway car might in one sense be said to
be at rest, if it remained standing on the same spot of the wall.
The fly, however, would not actually be at rest; it would share in
the motion of the train over the country, the country would share
in the motion of the earth round the sun, and the sun would
share in the motion of the whole solar system through space.

These instances will show the necessity of attaching a clear
and exact meaning to the conceptions of rest and motion. Obvi-
ously our statements would have been exact enough if we had
said that in the first case the train was at rest relatively to the
earth, and that in the second case the fly was at rest relatively to
the car.

5. Frame of reference. Thus we find it necessary, before dis-
cussing rest and motion, to introduce the conception of a Jrame of
reference. The earth supplied a frame of reference for the motion
of the train, and when a train is not moving over the rails we
may say that it is at 7est, the earth being taken as frame of
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reference. So also we could say that the fly was at rest, the car
being taken as frame of reference. Obviously any framework, real
or imaginary, or any material body, may be taken as a frame of ref-
erence, provided that it is rigid, i.e. that it is not itself changing
its shape or size.

We may accordingly say that a point is at rest relatively to any
frame of reference when the distance of the point from each point
of the frame of reference remains unaltered.

6. Motion relative to frame of reference. Having specified a
frame of reference, we can discuss not only rest but also motion
relative to the frame of reference. When the train has moved
a mile over the tracks we say that it has moved a mile rela-
tively fo its frame of reference, the earth. When the fly has
crawled from floor to ceiling of the car we say that it has moved,
say, eight feet relatively to its frame of reference, the car.

In fixing the distance traveled by the fly relatively to the train in an
interval between two instants t,, {3, we notice that the actual point from
which the fly started is, say, a mile behind the present position of the
train; but the point fromn which we measure is the point which occupies
the same position in the car at time 7, as this point did at time ¢;,. So, in
general, to fix the distance moved relatively to a given frame of reference
in the interval between times t; and 1y, we first find the point .4 which stands
in the same position relative to the frame of reference at time t, as did
the point from which the moving point started at time t;. The distance

from this point 4 to the point B, which is occupied by the moving point at
instant ¢,, is the distance moved relatively to the moving frame of reference.

By the motion of a particle B relative to a particle 4, is meant
the motion of B relative to a frame of reference moving with 4.

7. Composition of motions. Suppose that in a given time the
moving point moves a certain distance relatively to its frame of
reference, while this frame of reference itself moves some other
distance relatively to a second frame of reference, — as will, for
instance, occur if a fly climbs up the side of a car while the car
moves relatively to the earth. ‘

Let us suppose that there is a frame of reference moving in
the plane of the paper on which fig. 1 is drawn, and that the
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paper itself supplies a second frame of reference. Suppose that
the moving point starts at 4, and that during the motion that
point of the first frame of reference which originally coincided
with the moving point has moved
from 4 to B, while the point itself
has moved to €. Then the line 4B -
represents the motion of frame 1 7
relative to frame 2, while BC repre- <
sents the motion of the moving point
relative to frame 1. The whole mo-
tion of the point relative to frame 2 is represented by 4C. The
motion AC is said to be compounded of the two motions 4B, BC,
or is said to be the resultant of the two motions. Thus:

If a point moves a distunce BC relatively to frame 1, while
Jrame 1 moves o distance AB relatively to frame 2, the resultant
motion of the point relative to frame 2 will be the distance AC,
obtained by taking the two distances AB, BC and placing them in
posttion in such a way that the point B at which the one ends is
also the point at which the other begins.

There is a second way of compounding two motions. Let z, Y
represent the two motions. The rule already obtained directs us to
construct a triangle 4BC, to have z, y for the sides 4B, BC, and
then A€ will be the motion required. Having constructed such a

triangle 4 BC, let us

D € complete the paral-

4 lelogram ABCD by

Y drawing 4D, CD

—— A T B parallel to the side

of the triangle.

Then 4D, being

equal to BC, will also represent the motion g, so that we may say

that the two edges of the parallelogram which meet in 4 represent

the two motions to be compounded, while the diagonal 4 through

A bas already been seen to represent the resultant motion. Thus
we have the following rule for compounding two motions z, y:

F16. 1

Fic. 2
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Construct a parallelogram ABCD such that the two sides AB, AD
which meet in A represent the two motions z, y to be compounded,
as regards both magnitude and direction; then the diagonal AC
which passes through A will represent the resultant obtained by
compounding these two motions.

VELOCITY

8. Uniform and variable velocity. Velocity means simply
rate of motion. It may be either uniform or variable. If a point
moves in such a way that a feet are described in each second of
its motion, no matter which second we select, we say that the
velocity of the point is a uniform velocity of a feet per second.
If, however, the point moves a feet in one second, b feet in another,
¢ feet in a third, and so on, we cannot say that any one of the
~ quantities a, b, or ¢ measures the velocity. The velocity is now
said to be variable : it is different at different stages of the motion.
To define the velocity at any instant, we take an infinitesimal in-
terval of time d¢ and measure the distance ds described in this

time. We then define the ratio g—; to be the velocity at the instant

at which the interval d¢ is taken. If the velocity is uniform,%r

is the space described in unit time, and so the present definition
of velocity becomes the same as that already given.
Average velocity. If a point moves with variable velocity, and

describes a distance of a feet in ¢ seconds, we speak of % as the

“average velocity” of the moving point during the time ¢ This
average velocity is the velocity which would have to be possessed
by an imaginary point moving with uniform velocity, if it were to
cover the same distance in time ¢ as the actual point moving with
variable velocity.

Units. In measuring a velocity we need to speak in terms of a
unit of length and of a unit of time; for instance, in saying that
& point has a velocity of a feet per second we have selected the foot
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as unit of length and the second as unit of time. We can find the
amount of this same velocity in other units by a simple proportion.

Thus suppose it is required to express a velocity of a feet per second
in terms of miles and hours.
The point moves a feet in one second, and therefore a x 60 x 60 feet in
one hour, and therefore
ax60x60 15a

& 22
3x 1760 29 0%

15
in one honr. Thus the velocity is one of 2—2‘1 miles per hour.

EXAMPLES

1. A railway train travels a distance of 918 miles in 18 hours. What is its
average velocity in feet per second ?

2. Compare the velocities of a train and an automobile which move uni-
formly, the former covering 100 feet a second and the latter 1500 yards a minute,

3. A man runs 100 yards in 0% seconds. What is his average speed in miles
per hour ?

4. The two hands of a town clock are 10 and 7 feet long. Find the velocities
of their extremities,

8. Taking the diameter of the earth as 7927 miles, what is the velocity in
foot-second units of a man standing at the equator (in consequence of the daily
revolution of the earth about its axis) ?

6. Two trains 230 and 440 feet long respectively pass each other on parallel
tracks, the former moving with twice the speed of the latter. A passenger in
the shorter train observes that it takes the longer train three seconds to pass
him. Find the velocities of both trains.

9. Composition of velocities. All motion, as we have seen, must
be measured relatively to a frame of reference. Thus velocity,
or rate of motion, must also be measured relatively to a frame
of reference. A point may have a certain velocity relative to a
frame of reference, while the frame of reference itself has another
velocity relative to a second frame. It may be necessary to find
the velocity of the moving point with reference to the second
frame, in other words, to compound the two velocities.

To do this we consider the motions which take place during
an infinitesimal interval of time d¢. Let the moving point have
a velocity v, in a direction 4B relative to the first frame, while
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the frame has a velocity », in a direction 4C relative to the
second frame. Then in time df the moving point describes a dis-
tance v,d¢f, say the distance 4D, along 4B relative to the first
frame, while the frame itself describes a distance v,dt, say 4Z,
along AC relative to the second frame. Iet 4AF be the diagonal
of the parallelogram of which 4D, AE
are two edges; then 4F will be the
resultant motion of the point in time
dt relative to the second frame. Since
the moving point describes a distance
AF in time df, the resultant velocity

AF
9 be AF.
will be T

Fia. 3

Let us now agree that velocities are
to be represented by straight lines, the direction of the line being
parallel to that of the velocity and its length being proportional
to the amount of the velocity, the lengths being drawn according
to any scale we please; for example, we might agree that every
inch of length is to represent a velocity of one foot per second, in
which case a velocity of three feet a second will be represented by a
line three inches long drawn parallel to the direction of motion.

In fig. 3 let Ap, Aq represent the velocities ,, ¥; drawn on any
scale we please. Since the scale is the same for both, we have

Ap : Ag =, : v,
Now AE = v,dt, AD = v dt, so that
AE: AD =wv,: v,
and hence Ap: Ag=AE: AD.

If we complete the parallelogram Aprq, the diagonal 47 will pass
through F, and we shall have
Ar: Ap = AF: AL,
If ¥ is the resultant velocity, it has already been seen that
AF

=22,

dt
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so that AF: AE = Vdt : v,dt
= V:v,
and hence Ar: Ap= Vv,

Thus Ar represents the magnitude of the velocity 7 on the
same scale ag that on which Ap represents the velocity »,. Also
gince 47 is in the direction of A4F, the resultant motion, we see
that 47 represents the velocity ¥ both in magnitude and direction.
‘We have accordingly proved the following theorem :

THEOREM. If two welocities are represented in magnitude and
direction by the two sides of a parallelogram which start from any
point A, then their resultant is represented in magnitude and direc-
tion on the same scale by the diagonal of the parallelogram which
starts from A.

This theorem is known as the parallelogram of welocities. We
may illustrate its meaning by two simple examples.

4. Suppose that a carriage is moving on a level road with velocity V.
As a first frame of reference let us take the body of the carriage; as
a second frame take the road itself. The velocity of frame 1 relative to
frame 2 is then V. Relatively to frame 1, the center of any wheel P is
fixed, so that any point
on the rim describes H Q 14
a circle about P. Rela-
tively to frame 1 the
road is moving backward
with velocity V, so that
if there is to be no slip- P
ping between the rim and
the road, the velocity of
any point on the rim, rel-
ative to the first frame
(the carriage), must be V.
Thus the velocity of any Fic. 4
point @ on the rim rela-
tive to frame 1 will be a velocity V" along the tangent Q7. Representing
this by the line QT the velocity of the carriage relative to the road is
represented by an equal line QH parallel to the road. Thus the resultant
velocity of the point Q is represented by the diagonal QS of the parallelo-
gram QHST. Clearly its direction bisects the angle HQT. Let L be the

L
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lowest point of the wheel, and let X complete the parallelogram QPLX.
Obviously this parallelogram is similar to the parallelogram QTSH, corre-
sponding lines in the two parallelograms being at right angles. Thus

QS : QT = QL : QP.

So that on a scale in which the velocity of the carriage is represented in
magnitude by QP, the radius of the wheel, the velocity of the point @ will
be represented by QL. Thus the velocities of the different points on the
rim are proportional to their distances from I, their directions being in
each case perpendicular to the line joining the point to L.
~ 2. A battle ship is steaming at 18 knots, and its guns can fire projectiles
with velocities of 2000 feet per second relative to the ship. How must
c the guns be pointed to hit an object the direction of
L which from the ship is perpendicular to that of the
» ship’s motion?

Let A B be the direction of the ship’s motion, and
let us suppose the gun pointed in a direction A4C.
Then the velocity of the shot relative to the ship

-\ can be represented by a line Ap along A C, while that

4 9 B of the ship relative to the sea can be represented by

F10. 5 a line Aq along AB. Completing the parallelogram

Aprq, we find that the diagonal Ar will represent the

velocity of the shot relative to the sea in magnitude and direction. Hence

Ar must, from the data of the question, be at right angles to AB. If 6 is

the angle pAr through which the gun must be turned after sighting the
object to be hit, we have

pr velocity of ship

sing =4 = - - .
Ap  velocity of firing of shot

The velocity of the ship is 18 knots, or 18 nautical miles per hour.
Now 1 nautical mile = 1.1515 ordinary miles = 6080 feet, so that a
velocity of 18 knots is equal to 109,440 feet per hour, or 30.4 feet per

304 _ 0152, whence we find that 6 = 0° 52 167,

second. Thussing = __ —
2000

Triangle of Velocitios

10. We can also compound velocities by a rule known as the
triangle of velocities. In fig. 3 the two velocities were represented
by Ap, Ag, and their resultant by 4r. The two velocities, how-
ever, might equally well have been represented by 4p, pr, and
their resultant by A7, from which we obtain the following rule:
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If two welocities are represented by the two sides of a triangle
taken in order, thewr resultant will be represented by the third side,
taken in the direction from the first side to the second side.

For example, let OP,, OP, be two lines drawn through O to
represent, dn any scale, the velocities of a mov- P,
ing point at instants ¢,, ¢,. Then P, P, will, on
the same scale, represent the additional velocity
acquired by the point in this interval.

For we can imagine a frame moving with
the uniform velocity OP, of the particle at
instant #,. The velocity OP, at instant ¢, may
be supposed compounded of the velocity OP,
of the frame and a velocity P,P, relative
to the frame. Obviously this latter is the increase of velocity.

P,

(o]
F16. 6

EXAMPLES

1. A car is running at 14 miles an hour, and a man jumps from it with a
velocity of 8 feet per second in a direction making an angle of 30° with the
direction of the car’s motion. What is his velocity relative to the ground ?

2. A railway train, moving at the rate of 60 miles an hour, is struck by a
bullet, which is fired horizontally and at right angles to the train with a velocity
of 440 feet a second. Find the magnitude and direction of the velocity with
which the bullet appears to meet the train to a person inside.

3. A ship whose head points northeast is steaming at the rate of 12 knots in
a current which flows southeast at the rate of 5 knots. How far will the ship
have gone in 2} hours ?

4. A train js traveling at the rate of 80 miles an hour, and rain falls with
a velocity of 22 feet per second at an angle of 30° with the vertical in the same
direction as the motion of the train. Find the direction of the splashes made
on the windows by the raindrops.

5. A steamer’s course is due south, and its speed is 20 knots; the wind is
from the west, but the line of smoke from the steamer is observed to point in a
direction 80° east of north. What is the velocity of the wind ?

6. A man rows across a stream a mile wide, pointing his boat upstream at
an angle of 80° with the bank. How long does he take to cross, if he rows with
a velocity of 4 miles4n hour and if the current has an equal velocity ?

7. A stream has a current velocity ¢, and a man can row his boat with a
velocity b. In what direction must he row, if he is to land at a point exactly
opposite his starting point? And in what direction must he row so as to cross
in the shortest time ?
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8. A ship whose head is pointing due south is steaming across a current run-
ning due west; at the end of two hours it is found that the ship has gone 36 miles
in the direction 15° west of south. Find the velocities of the ship and current.

9. A person traveling eastward at the rate of 8 miles an hour finds that the
wind seems to blow directly from the north; on doubling his speed it appears
to come from the northeast. Find the direction of the wind and its velocity.

ACCELERATION

11. Acceleration is rate of increase of velocity. If we find that
the velocity of a moving point increases by an amount £ in a sec-
ond, no matter which second is selected, we say that the motion
of the point has a uniform acceleration f per second. For instance,
a stone or other body falling under gravity is found to increase
its velocity by a certain constant velocity / per second, where ¥
denotes a velocity of about 32 feet per second. Thus we say that
2 falling stone has a uniform acceleration of f per second, or of
about 32 feet per second per second.

Generally, however, an acceleration will not be uniform ; the
rate of increase of velocity will be different at different stages of
the journey. To find the acceleration at any instant, we observe
the change in velocity during an infinitesimal interval df of time.

If dv is the increase of velocity, we say that % is the acceleration

at the instant at which dt is taken. An acceleration will of course
have sign as well as magnitude, for the velocity may be either
increasing or decreasing. When the velocity is decreasing, the
acceleration is reckoned with a negative sign. A negative accelera-
tion is spoken of as a retardation. Thus a retardation J means
that the velocity is diminished by an amount J per unit of time,

EXAMPLES

1. A workman fell from the top of a building and struck the ground in
4 seconds. With what velocity did he strike the ground, the acceleration due to
gravity being 82 feet per second per second ?

2. A train has at a given instant a velocity of 30 miles an hour, and moves
with an acceleration of 1 foot per second per second. Find its velocity after
20 seconds.
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3. A train comes to rest after the brakes have been applied for ten seconds.
If the retardation was 8 feet per second per second, what was the velocity of
the train when the brakes were first drawn ?

4. How long does it take a body starting with a velocity of 22 feet per second
and moving with an acceleration of 6 feet per second per second, to acquire a
velocity of 60 miles an hour ?

5. Two bodies start at the same instant with velocities  and v respectively;
the motion of the first undergoes a retardation of f feet per second per second,
while that of the second is uniform. How far will the second have gone by the
time that the first comes to rest?

6. A body starting from rest moves for 4 seconds with a uniform accelera-
tion of 8 feet per second per second. If the acceleration then ceases, how far
will the body move in the next 6 seconds ?

7. A train has its speed reduced from 40 miles an hour to 80 miles an hour
in b seconds. If the retardation be uniform, for how much longer will it travel
before coming to rest ?

8. A body falling under gravity has an acceleration of 82.2 feet per second
per second. Express this acceleration when the units are (a) centimeter,
second ; () mile, hour.

12. Parallelogram of accelerations. THEOREM. Let the velocity
of a point be compounded of two velocities v,, v, along given direc-
tions, and let these velocities be variable, their accelerations being
Ju Joo Then if two lines be drawn in the direction of the velocities,
to represent f,, f, on any scale, the resultant acceleration will be
represented on the same scale by the diagonal of the parallelogram
of which these
lines are edges.

To prove the
theorem, we
consider the
motion dur-
ing any small
interval d¢
at which the
component ac- 4 Fia. 7 BB
celerations are
Ju Joo Infig. 7 let AB, AC represent the two velocities »,, v, at the
beginning of this interval. Let BB/, CC' represent, on the same
scale, the infinitesimal increments in velocity in the interval df,

N
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namely f,d¢, fodt. Then AB’', AC' will represent the velocities at
the end of the interval dt.

In the figure the lines BDF, B'ED', CDE, C'FD' are drawn
parallel to 4B and AC. Thus AD represents the resultant velocity
at the beginning of the interval d¢, and 4D’ that at the end of the
interval. The velocity 4D’ can be regarded as compounded of the
two velocities 4D, DD, and, as in §10, DD’ represents the incre-
ment in velocity in time df. Thus, if 7 is the resultant acceleration,
the line DD’ will represent a velocity Fd¢. On the same scale DE,
DF represent velocities f\dt, f,dt, and DED'F is a parallelogram.

If OF,, OF, (fig. 8) represent the accelerations f,, f, on any scale,
and if OG is the diagonal of the completed parallelogram, we
P g clearly have OF,:0F, = f,:f,= DE: DF,

o that the parallelograms OF,GF, (in
fig. 8) and DED'F (in fig. 7) will be simi-
lar and similarly situated. Thus
0G:0F, = DD': DE = Fdt:fdt = F:f,,
so that OG represents the acceleration F
4 Fra. 8 % on the same scale as that on which OF,,
OF, represent f,, f,; and OG, being parallel
to DD/, will also represent the direction of 7, proving the theorem.

Clearly the acceleration at any instant need not be in the same
direction as the velocity. In fig. 7 the directions AD, AD' repre-
sent velocities at the beginning and end of the interval d2. When
in the limit we take df = 0, these lines coincide, and the direction
of the velocity at the instant at which d¢ is taken is that of 4D,
The direction of the acceleration at this instant is, however, DD

~ As an illustration of this, let us consider the motion of & particle mov-
ing uniformly in a circle; e.g. a point on the rim of a wheel, turning with
uniform velocity ¥ about its center.

Let 4, B (fig. 9) be the positions of the point at two instants, let the
tangents at A, B meet in C, and let D complete the parallelogram 4 CBD.

The velocity at the first instant is a velocity V along AC. Let us agree
%o represent this by the line A C itself. At the second instant the velocity
is a velocity V along CB; this may, on the same scale, be represented by
the line CB, or more conveniently by AD. Since AC, AD represent the




ACCELERATION 15

velocities at the two instants, the line CD will represent the change in
velocity between these two instants.

Now let the two instants differ only by an infinitesimal interval dt, so
that the points 4, B coincide except for an infinitesimal arc Vdt. In the

figure, CD passes through B

P wherever A, B are on the

circle, so that when B is \
made to coincide with 4, \\\\

CD coincides with the ra-
dius through A. But if ¥
is the acceleration of the
moving point, the change
in velocity produced in
time dt must be Fdt. Thus CD represents the change of velocity Fdf in
direction and magnitude, so that the change of velocity, and hence the
acceleration at 4, is along the radius at A.

Here, then, we have a case in which the acceleration is at right angles
to the velocity.

To find the magnitude of the acceleration, we notice that CD = 2 CE,
and that, by similar triangles,

EC:CB= BE : BP.

A
FiG. 9

Now EC, or } CD, represents the velocity 4 Fdt, while CB on the same
scale represents the velocity V.

Thus + Fdt: V= BE : BP.

In the limit when BA is very small, BE, or 4+ BA, becomes identical
with half of the arc BA of the circle, and therefore with 4 Vdt. Thus,if a
is the radius of the circle,

YFdt: V=134Vdt:a,

giving F= ? as the amount of the acceleration.

EXAMPLES

1. A windmill has sails 20 feet in length, and turns once in ten seconds.
Find the acceleration of a point at the end of a sail.

2. A wheel of radius 3 feet spins at the rate of 10 revolutions a second and
is at the same time falling freely with an acceleration of 82 feet per second
per second due to gravity. Find the resultant accelerations of the different
points on the rim of the wheel.

3. Taking the earth to have an equatorial diameter of 7927 miles, find the
acceleration towards the earth’s center of (a) a point at rest, relative to the
earth’s surface, on the equator; (b) a body falling under gravity at the equator,
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with an acceleration, relative to the earth’s surface, of 32.09 feet per second

per second.
4. Supposing that the moon describes a circle of radius 240,000 miles round

the earth in 29} days, find its acceleration towards the earth.

5. Assuming that the planets describe circles round the sun with different
periodic times, such that the squares of the periodic times are proportional to
the cubes of the radii of the circles, show that the accelerations of the planets
are inversely proportional to the squares of their distances from the sun.

VECTORS

13. We have found three kinds of quantities, — motion, velocity,
and acceleration, —all of which can be compounded according to
the parallelogram law.

Quantities which can be compounded according to the parallelo-
gram law are called vectors. A vector must have magnitude and
direction, and hence must be capable of representation, on an
assigned scale, by a straight line. We have seen that motion,
velocity, and acceleration are all vectors.

Composition and Resolution of Vectors in a Plane

14. By definition of a vector, two vectors can be compounded
into one, by application of the parallelogram law. It also fol-
lows from the definition that any one vector may be regarded as
equivalent to two, these two being represented by the edges of a
parallelogram constructed so as to have the original vector repre-
sented by the diagonal ; or, as we shall say,
any vector can be resolved into two others,

In particular, if we construet a rectangu-
lar parallelogram so as to have a line which
represents a vector R as its diagonal, we find
that the vector B can be resolved into two
vectors Ecose and R sin ¢, at right angles to one another, and in

Fig. 10

directions such that R makes angles e, %— € with them.

If we take two fixed rectangular axes Oz, Oy in a plane, we see
that any vector R can be resolved into two components & cos e,




