Assembly Language
Programming

for the IBM PC Family

. William B. Jones

Assembly Language for
the IBM PC Family

William B. Jones

California State University
Dominguez Hills

Scott/Jones Inc.
Publishers
P.O. Box 696
El Granada, CA 94018

Copyright 1992 by
Scott/Jones Inc., Publishers
P.O. Box 696

El Granada, CA 94018

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means without written permission of the publisher.

Printed in the United States of America

Microsoft Assembler is the product of Microsoft Corporation.
Turbo Assembler is the product of Borland International.

Book production: Highpoint Graphics
Book Manufacturing: Malloy Lithographing, Inc.

Jones, William B.,
Assembly language for the IBM PC family / William B. Jones.
670 p. cm. :
Includes bibliographical references and index.
ISBN 0-9624230-6-8
1. IBM microcomputers—Programming. 2. Assembler language
(Computer program language) 1. Title.
QA76.8.1259193166 1992
005.265—dc20 91-42704
CIp

Preface

Why Learn Assembly Language?

Assembly Language is a symbolic form of a computer’s own internal language, called
machine language. In bygone days when I was first making a living as a programmer, all
“hero programmers” wrote nothing but assembly language. The only high-level languages
generally available were Fortran and COBOL, and they really weren’t capable of the esoteric
things that hero programmers wanted to do. Today though, the high-level languages are so
good that they will do virtually anything you want to do. Also, studies have shown that pro-
grammers are much more productive when using high-level languages, and modern optimiz-
ing compilers often produce code that is nearly as good as that produced by experienced
assembly language programmers.
So why do we study assembly language? There are several good reasons:

* There are programs where small size and/or high speed are so essential that they are
written mostly or entirely in assembly language. Examples are the WordPerfect word
processing program and the Lotus 1-2-3 spreadsheet program for the IBM PC. It may
also be necessary to write entire programs in assembly language when the computer is
special purpose and there is an insufficient market to warrant writing a high-quality
compiler.

+ There are a few things which simply can’t be done in a high-level language, or can only
be done with much less efficiency than in assembly language. Also sometimes small
sections of code are repeated a large number of times, making it worthwhile to opti-
mize them to the highest degree possible. See Chapter 15 and Section 16.7, as well as
the book Undocumented DOS (see the bibliography) for examples. In cases where a

X

Preface

small amount of assembly language is necessary or desirable, most of the program is
written in a high-level language but selected parts are coded in assembly language as
separate subprocedures. The current versions of Turbo Pascal, Turbo C, and Microsoft
C also allow the programmer to drop into assembly language to make use of special
instructions.

* Writers of compilers may need 10 know the assembly language of the target machine.
The most common type of compiler translates a high-level language such as C or Pas-
cal into machine language. Today compilers are usually written in a high-level lan-
guage, often in the language they compile! (Many books on compiler construction
describe how this is possible.) Even though the compiler isn’t written in assembly lan-
guage, the programmers who write the code generation part must know assembly lan-
guage, because that’s (more or less) what the compiler is producing.

* It is an unfortunate fact that all large programs, including compilers, have bugs. If a
piece of code isn’t working and you suspect it is because the compiler is producing bad
code, you will have to look at the machine language it generates, perhaps as the sort of
assembly language displayed by an interactive debugger (see Chapter 5). I have found
bugs in several commercial C compilers this way.

* Even programs which are written entirely in a high-level language and don’t produce
machine language may require a detailed knowledge of machine architecture. For
instance, it would be very difficult to write programs for the IBM PC of even moderate
sophistication without knowledge of much of the material in Chapters 13, 17, and 20 of
this text. As another example, a knowledge of how operations in a high-level language
are actually performed in the machine removes a lot of the mystery surrounding pro-
gramming and can improve the efficiency of the high-level code written.

+ Writing assembly language is fun!

Assuming now that leaming assembly language is a worthwhile endeavor, why learn
IBM PC assembly language? Different computer architectures require different assembly
languages. IBM PC assembly language is quite different from, say, assembly language on the
Apple Macintosh, or even on IBM mainframes. So why pick the IBM PC?

The IBM PC and its clones (copies) form by far the largest group of personal computers
available. Therefore the machines are readily available to leam on and software written for
them has a large potential market. Also, the software tools necessary to write assembly lan-
guage on the PC are excellent, widely available and reasonably priced. The machine has quite
a simple architecture in terms of 1/O and other operating system-related concepts that often
present important reasons for writing assembly language. Finally, the IBM PC assembly lan-
guage is sufficiently ordinary that most other machine assembly languages are easy to leam
once you have leamed the PC.

Distinctive Features of this Book

Distinctive Features of this Book

 Both major assemblers, MASM and TASM, along with their debuggers, are treated.

» Correct programming style is introduced early and used constantly. For instance, use of
EQUates is introduced early and emphasized throughout. Allowing the assembler to do
the computing is encouraged: a loop to be executed for subscripts 30 to 40 is executed
40 - 30 + 1 times, rather than the more mysterious 11.

» As early as practicable, examples are given using the kind of applications that real-
world programmers use assembly language for. Some themes appear over and over in
the text, as the early crude solutions of various problems are refined and varied, empha-
sizing that in assembly language, there are many solutions to most problems.

» Detailed algorithms are presented for turning high-level pseudo-code for “if” state-
ments and loops into correct low-level assembly code. They involve “decorating” the
pseudo-code with arrows showing parts of the code skipped under various conditions,
and then straightforward methods for turning such diagrams into code.

« Subprograms for doing numeric I/O are included in a library on the disk that comes
with this book. Their sources are also included.

+ All major DOS calls are covered, together with selected BIOS calls. An INCLUDE file
of macros for the DOS calls is on the disk accompanying this book.

» Use of modern source-level interactive debuggers is introduced early. Features are
introduced throughout the text where needed, and exercises are given to walk the stu-
dent through these features. Usage of two different debuggers is separated so that the
student need only consider one of them. If one wishes to avoid debuggers entirely (for
religious reasons or because another system not using the debuggers covered here is
being used) this is easily done.

* Exercises are provided in a wide range of difficulties. These vary from large numbers
of exercises of the “what does this instruction do in this situation?” form to short pro-
gramming exercises which may require substantial thought. Representative answers
are given. In addition, most chapters end with several carefully specified programming
problems in varying degrees of difficuity.

* Programs are developed incrementally. Code which is at all complex is first developed
in pseudo-code. Modifications to code are indicated clearly: bold for new text and
strikeeut for text that has been removed. Code is shown mostly in lowercase, with cap-
ital letters for legibility. Types of operation codes are distinguished using capitaliza-
tion: all lowercase for machine operations, all uppercase for pseudo-operations, and
mixed upper- and lowercase for macros.

* High-level language constructs are related to the assembly language into which they
translate.

In addition to the above, the reader should note the following:

« Each chapter will begin with a preview of its contents and a list of the topics to be
covered and ends with a summary of the material covered.

xi

xii

%,

Pretace

« Exercises or parts of exercises marked # have answers in the Answer section at the end

of the book.
» Pieces of code which you should emulate only at your peril are indicated by the universal
Don’t-do-this symbol in the margin:

Play with, matches

Organization of this Text

There is much too much material in this book to be covered in a one semester course, I would
suggest that there is a central core of the book which should be covered, pretty much in the
order given. The remaining time can then be given over to special topics, laboratory exer-
cises, and student projects as suits the interests of instructors and their students.

Central Core

Chapters 1-4 (_Get Str in §3.5 may be delayed until Chapter 11; §4.2 (byte swapping) may
be de-emphasized.

Chapters 67 (arithmetic and decisions), §§ 8.2-8.3 (subprocedures and separate assembly.

§§9.1 (program testing), 9.2 (simple macros) and 9.4 (repetition and = pseudo-ops)

§§10.1-10.2 (logical and shift operations)

Chapter 11 (arrays)

§§13.1-13.5 (segments—very important for the (peculiar) IBM PC architecture; less so for
more typical architectures. Only §13.1 is required for the remaining core.)

§14.1 (procedures and the stack)

§§16.1-16.2 (Interrupts)

Alternate Themes

In addition to this core material, various other topics or emphases can be arranged into
various threads or themes, and pursued to varying degrees depending on the interests and
orientation of the reader.

Interactive Debuggers (possibly lab exercises): Chapter 5, §§ 6.3, 7.4, 8.6, and 13.6

I/O Conversion Routines: §§ 8.1, 8.4-8.5, 10.3, 12.1

Relationships to High-Level Languages (chiefly C and Pascal): 10.4, 11.4, 12.2-12.4,
13.7 (pointers), 14.2-14.4

Macros: §§ 9.2-9.4, 11.3, Chapter 17, §18.3, §§20.2-20.3

Systems Programming Stuff: §§13.5, 13.8, Chapter 16, §§18.4-18.5

Raisons d’étre for Assembly Language: Chapter 15

File Processing: Chapter 18

Special String Operations: Chapter 19

Video: Chapter 20

Advanced Processors (80286, 80286, 80486, and 80X87): Chapter 21

What Do You Need for this Book?

What Do You Neced for this Book?

I make the assumption that you already know some high-level language, such as Pascal or C.
Only occasionally will any detailed knowledge of these languages be required, and those
situations will be encapsulated so that you can skip them if you wish. A description of the
Pascal-like pseudo-language used for comments, exercises, etc., is given in section 1.4.

You can’t learn to program in a vacuum. You need to write and debug programs, and for that
you need the following hardware and software:

+ An IBM PC or PC Clone running the MS- or PCDOS operating system, version 2.1 or
later, and preferably version 3.0 or later. You should have a hard disk (highly prefera-
ble) or two floppy disk drives and at least 512K of RAM memory. Any model (XT, AT,
PS-2, etc.) will work. A mouse is desirable.

» An Assembler and related software, a linker and a debugger—either the Microsoft
Assembler package (version 5.1, or 6.0; version 5.0 differs only slightly from version
5.1) or the Turbo Assembler package (version 1.0 or later; version 2.0 or later pre-
ferred). The important parts of the Microsoft package are MASM, the assembler;
LINK, the linker; and CV, the CodeView debugger. The important parts of the Turbo
package are TASM, the assembler; TLINK, the linker; and TD, the Turbo Debugger.
The assemblers and linkers in these two packages are virtually functionally identical.
For a comparison of features of the debuggers, see Section 5.6.

* A text editor. The editor M which comes with MASM 5.1 or the editor ED which
comes on the disk that accompanies this book are both acceptable. MASM comes
with an all-encompassing programming environment called Programmer's Work
Bench (PWB for short) which includes an editor. Unfortunately, PWB is so slow even
on the author’s 16 MHz 80386 as to be virtually unusable.

* The disk that accompanies this book. In addition to the editor mentioned above, it con-
tains a library of useful routines (chiefly, for numeric 1/0), a library of useful macros,
the source files of the library routines, the source files for the various debugger exer-
cises in the book, and the source files of all complete programs in the text.

Note: As you saw above, we will mark passages specific to MASM 6.0 with the symbol [60].
We will mark passages specific to TASM 2.0 or later (mostly having to do with the Turbo

Debugger) with [2.0].

Pedagogy and Politics—Some choices which may prove controversial

Every textbook author makes many choices. There are three I have made that I would like to
explain in advance, in hopes that the more sophisticated reader who may disagree with them
will at least understand my side of the argument. In brief, the three decisions I will try to
justify are

xiit

xiv

Preface

N

I ignore the rather elaborate procedure declaration and call mechanisms available in
both assemblers,

Almost from the beginning, I use macros to effect DOS calls, and

I will use a quick-and-dirty solution to a rather subtle problem with assumed segment
register values rather than a more elaborate and more “correct” mechanism.

The first and second can be explained rather easily on an elementary level, while the third
requires an excursion into concepts which will not be fully understood until the material in
section 13.8 and Chapter 16 is mastered.

1.

3.

Both assemblers have procedure declaration mechanisms which resemble those of
high-level languages. They take some of the pain out of manipulating parameters and
local variables. I have three reasons for ignoring these mechanisms. First, I believe
that it is important to understand in detail how the stack-frame works. To do this one
must learn the details of manipulating it. Second, my publisher assures me that assem-
bly language textbooks must be noticeably shorter than Calculus texts. I simply don’t
have the space to cover the stack manipulations both with and without the syntactic
sugar. Thirdly, the two assemblers use three separate syntaxes for procedure declara-
tion, and other assemblers for other machines don’t have any such syntactic sugar at
all, which exacerbates the second reason.

I introduce macros for DOS calls (contained on the disk accompanying this book)
early on and usc them almost exclusively. You might think that this contradicts my
effort with procedure declarations to get close to the hardware. However I just don’t
think it takes very many times to get the general idea of putting stuff in the randomly
chosen registers expected by DOS, putting a funny number in AH, and executing int
21h, an instruction which will remain mysterious until Chapter 16 anyway.

The problem with assumed segment register values is as follows: the MASM and
TASM abbreviated segment definitions tacitly group the stack and .DATA segment,
and thus assume that SS = DS. This in fact is not the case when DOS starts your pro-
gram. In order to make SS = DS happen, each program must start out with about ten
lines of non-obvious, highly sophisticated code which alters SS and SP.

For the first twelve chapters of this book, my solution to this problem is the same
as that of TASM and MASM-before-version-6.0: I ignore it! You only get into real
trouble with the ignorance-is-bliss solution when you use multiple data segments
(starting in Chapter 13).* I know from bitter experience, however, that such a non-
solution can ultimately give rise to bugs which are very difficult to find.

One could of course publicize the problem and rely on the programmer to avoid
the tricky situations, but it is better to come up with a more reliable solution. Once

* If you ever use DS for something other than the .DATA segment address and try to address something in the

DATA segment, both assemblers will use SS, even if you have put the DATA segment address in ES and
ASSUMEd it there!

Pedagogy and Politics—Some choices which may prove controversial

again, there are three possibilities, with various associated plusses and minuses.

First there is the MASM 6.0 solution in which a macro is supplied which correctly
sets SS = DS. I could have supplied a version of this macro but for various reasons,
rejected that idea. The two-instruction startup I do use isn’t completely explained until
Chapter 13, but the student knows virtually from the beginning what the code does,
even if the reason for doing it is mysterious. Similarly for the code used in DOS mac-
ros. I don’t like the idea, though, of forcing the reader to use a large amount of code
from the very beginning—even as a macro—that he or she won’t understand until late
in the book (if ever).

Second, we could always tell the assembler that stack and .DATA are not grouped.
This can be done in MASM 6.0 by the statement

.MODEL SMALL, FARSTACK ; MASM 6.0 only
and in TASM 2.0 by the (apparently undocumented) statement
.MODEL SMALL, NOLANGUAGE, FARSTACK ; TASM 2.0 only

In my opinion these are the best solutions because they actually describe the real
world when a program starts execution. They were discarded because there is no such
solution in some versions of the assemblers, and the solutions differ markedly in ver-
sions where they do exist. Also it goes without saying that it is always dangerous to
use an undocumented solution (it may change in later versions of the software).

Therefore 1 was left with the third solution, the one I actually chose. In programs
with multiple data segments, use

ASSUME 88 : NOTHING ; The chosen method

at the beginning of the code segment. This is a little mysterious, but goes to the heart
of the problem and has the advantage of working in all assemblers in all versions. I
start using it where necessary from Chapter 13 on.

This choice is not without a little accompanying guilt. For one thing, it appears
inconsistent. In the first place, if I remained true to my principles, I would have used
such a solution from the beginning of the text. Also I would have used compact model
(one code segment, multiple data segments) instead of small model since I am tacitly
assuming from the start that .DATA and stack are separate segments. Though these
things bother me, I believe they are outweighed by pedagogical considerations: Most
documentation mentions small model, and also it seemed unnecessarily confusing to
switch from small to compact later on. In addition, the assemblers don’t seem to think
there is anything wrong with separate .DATA and stack in small model (witness the
FARSTACK solution above). Finally, the only difference between small and compact
models in the code generated is when the fancy procedure declaration syntax is used,
and I rejected that in number 1 above.

XV

xvli

Preface

Acknowledgments

Class Testing

Any teacher will confirm that they don’t really know if a book will do the job until they’ve
taught out of it. In an effort to provide more than the usual quality control in the development
of this text, a preliminary edition was taught from twice by Maria Kolatis at County College
of Morris in New Jersey and by Reza Ahmadnia at California State University Dominguez
Hills (as well as several times by myself). Their feedback has been of great help.

Further, prompted by my publisher’s offer of a free published text to anyone reporting a

dozen errors or even unclear explanations of the class-test edition, their students were not at
all hesitant to inform us of problems. They really helped improve the quality of this book.

Reviews

Portions of this book were reviewed by various colleagues. Their comments and criticisms
have improved the book immensely:

Richard Easton Gary Lippman

Indiana State University CSU Hayward

Cay Horstman John Crenshaw

San Jose State University Western Kentucky University

Kerry Hays John Chapman

San Jose City Collge Johnson County Community College
Arthur Geis David Williamson

College of DuPage Indiana University/Purdue University
Thomas Abromovich Ray Bell

Black Hawk College University of Texas El Paso

Guy Pollock Russell Hollingsworth

Mountain View College Tarrant County Junior College

Eric Lundstrom Nita Caftori

Diablo Valley College Northeastern Illinois University

Acknowledgments

In addition the reviews of the entire manuscript by Paul LeCoq of Spokane Community Col-
lege, including a person-to-person chat when he was visiting Southern California, have con-

sistently been “above-and-beyond-the-call.”

Production and Development

Sheryl Rose copyedited the manuscript for this textbook, and Sheryl Strauss served as a
proofreader for page proof. They both did great jobs. I did the artwork for this text using
MacDraw II and Adobe Mlustrator. The manuscript was conscientiously transformed into a
text by Highpoint Type and Graphics. Finally, while developing this project over the past two
years, my publisher Richard Jones (no relation), has alternately made suggestions; bitten his
tongue; and mostly knew when to do which.

Bill Jones
Hermosa Beach, CA
1992

xvii

Contents

Prefacecovieuiiiiiiiiiiiiiinneteite ittt etrsasesassantasnsasnrasasssarossensrarerarasasenns ix
1. ASIimple Program......cccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiicicssesnceisssasasecesnsnsosnoraress 1
L O 1T (01 1 P 2
1.2 The Decimal, Binary, and Hexadecimal Numbering Systems.......................... 7
1.2.1 The Binary Number SYStemccoeoiriiviiiiiiiiiiiiieieeeee e, 8

1.2.2 Conversions between Binary and Decimalo 8

1.2.3 The Hexadecimal Number Systemcocooviiiiiiiiiiiiiii e 9

1.2.4 Conversions Involving Hexadecimal........................ocoooviiiin . 10

1.2.5 Additionin Binaryand Hex ..o 12

1.3 The ASCII Character SELc.vuvuviniiit i e e 13
1.4 A Pascal-like Pseudoprogramming Languageccocoeieiiiicvniinninnn.. 15

2. ASSEMDIEr OVEIrVIBW ..ocuieiiiniiiiiiiiiiiiiiiiietniettietetenereerternasassssecernresronsenens 19
2.1 Hardware OVEIVIEWoooiiiiiiiiiiiit e 20
2.1.1 Level I: General Properties of Digital Computers............................... 20

2.1.2 Level II: The IBMPC Hardware.................c..cooeieiiiiiiiiiiiieeae e, 24

2.1.3 Level HII: Particular Characteristics of the IBMPC 25

2.2 Structure of an IBM PC Assembly Language Program................................. 27
2.2.1 Global Program Structure...........ooeviiiiiniiii e 30

2.2.2 The .DATA SEEMENt......iunenitittiiieitit ettt e, 32

2.2.3 The .CODE Segment in the First Programcooevnveninn.... 36

2.2.4 Comments 0N COMIMENLSo.uiurrir e et 41

iv

Contents

3. Input/Output and SUCh ...ttt iiirre st sasesessaeanassorsns 45
020 O - To) (). S PP 46
3.2 The DOS Display Character Call ..., 49
RRCINYG B2 (A 3] 111015 S 50
3.4 NumerniCI/O ..o e 51
3.5 Getting Input from the Keyboardoooiviiiiiiiiiiii e, 55
Data Movement INStructionscccuveviuiiniuricieireniiiiiiiecierereseeireceerenenes 63
4.1 More onthe Mov INSERUCHONooviiiiitiii e, 64
4.2 BYIE SWaPPING .. ceuniiniiiie e e 68
4.3 The SLACK . ..oniiiiiitieee e e 72
4.4 The Data Exchange (Xchg) INSUruCton.oooii i, 78

. Introduction t0 DebugEers.......c.ceviuiriuieiiniiiiiieieeeireeeieeeieneeeeeaenearnsnns 81
5.1 CommonPoints inCVand TD i 82
5.2 CodeView INtroductionco..oiiiiiii e 86

S.2.1 AL VETSIONS...coeiiiiitiiii e 86
5.2.2 Special Information for MASM 6.0 CodeView..............cocevvvinennan.... 89
5.3 Turbo Debugger INtroductioncoo.iiiiiiiiiiiiniei e 91
5.4 DebUgZEer EXEICISESvuu.inini i it e e 96
5.5 Automating ASSEMDBLYcooiiiiiiiiiiiiie e 99
5.6 Some Strengths and Weaknesses of the Two Debuggers...................c.....o.... 99
e ATIRIMELIC .. .ceuviiiiiiiiiii ettt et e et s eeee e e snn e s enaes 103
6.1 Negative Numbers; 2’s Complement Arithmetic...............coooovvvueivniinniin.. 104
6.1.1 Sign-Magnitude Representation.................o..oooviniinvinieneennnnenn... 104
6.1.2 1’s Complement Representationocuevevniieineeieiiinn, 104
6.1.3 2’s Complement Representationcc.oveuueeuniisiesisiiinn, 105
6.2 ATHNMELC.ovtiiit ittt e e 111
6.2.1 Addition and SUbLIaCtiON.............c.o.iiiiiineie il 111
6.2.2 Multiplication and DiviSion...................cooeeiviiiieeisiiiiniee e, 113
6.3 A Debugging EXampleooooiiiiiiiiiiiiiiinie e 120

. Comparing and Branchingcooviuniiiiiimii i eiieeieereeeeeeeienenns 125
7.1 Decision Making in Assembly Language..................oovuvveuniiniiiineii 126
T2 LIOODS 1ot e 136
7.3 Arithmetic and Conditional JUMPSocovevriurinaie e 145
7.4 Debugging with Breakpoints..............ccooeeuviiuniireoeiie e 147

7.4.1 Turbo Debugger Breakpoints....................co.oooi 147
7.4.2 CodeView Breakpoints.............c..oiiuuiiineeeae e 148
7.4.3 Debugger EXample...........ccoooooiiiiiinniiiiiiiees e 149
7.5 Some Technical Details on Compares and JUmMps........................ccoooiiiinl 150
7.5.1 The Internal Format of Jump INSUrUCHONScouvvivnevneineeieoii 150

7.5.2 Unsigned Conditional JUMPSc..oeunveenmiieiiei 152

Contents

8. Applying Assembly I: I/O Number Conversions and Subprocedures.............. 157
8.1 Displaying Unsigned NUMbEIScoooviiiiiiiiiiiiiii e 158
8.2 PrOCEAUIES iiiitiir ittt ettt vt ettt e s v e e st et easanainantaneeranans 162

8.2.1 The Calland Ret INSIIUCHONS........coiviiiriiiiiiiiii e e 162
8.2.2 Writing Callable Procequresooevvriiiiiiirniiiiiiiieiiiie s 163
8.2.3 Turning Our Code Into a Callable Procedure: PutUDec 164
8.2.4 The Complete PrOZramccoiviiiiniiiviiiiiaiiiieieiereeninenennss 165
8.3 Placing Procedures in Separate Files....................oooi 166
8.3.1 Using Separately Translated Procedures................ocevveiieeiivenrnnennnns 167
8.3.2 Writing Separately Translated Proceduresccoocovvveiivinenenen..n. 169
8.4 Tumning PutUDec int0 PUtDEC .. eoouiuitiiiiinii e e 173
8.5 Reading a Number from the Keyboardcoooiiivivininin 176
8.6 Debuggers: The Stack and Separately Translated Procedures....................... 180
B.0.1 CodEVIEW....oumiiiiiiiiie e 180
8.6.2 Turbo DEBUZEET.o 181
8.6.3 Debugger Example 5 183
8.6.4 Debugger EXample 6coooiuviiiiiiiniiiii i 185

9. Introduction to Writing Macros; Program Testing..........c.c.eevveveevvennneennnnn. 191
9.1 Program TeSUNEo.oeiiii i 192
9.2 SIimPIE MACIOS ... ceiiniit it 193
9.3 FanCier MACTOS.ovuuiiiiiee it 200
9.4 Pseudomacros for REPELtONooviuiiiiniieie e 204

10, Bit OPerations.......cueuuerreiirerreereeereereereesniuseesseeessserersssnsssnnssessssssesnnns 211
10.1 Boolean Operationsovuviiuiiiniireee e 212
10.2 Shift OPErationsooiiiiiiiiiiiieie e 219
10.3 An Application: Code to Implement PutHex.............uuveveeveunnneesrinnnn...., 226
10.4 A Little Something Extra: Bit Instructions in High-Level Languages 227
10.5 A Little Something Extra: Assembler Record Structures 230

BEe ATTAYS ..ottt rteeee e reae e e eeserentsesenssneeseennssnnnssnnssmnnnmns e 237
11.1 Address Arithmetic and ATTaYS...............uueeveeneeereeireeeeeeeeseee 238
T1.2 USING AITAYS ...oouiiie it 246
11.3 An Important Application: Conversion Tablescooovevvviiieiii. 258
11.4 Arrays in High-Level Languages...............cccooovieuveeeiunees e 263

12. Applying Assembly II: USING ATTAYS ..cceevereveneenennenereeeeeeeesensennnsssseseesens. 273
12.1 The PutDec Procedure Revisited.cooueeireueneeiisiii 274
12.2 C-Type Variable-Length Character SIHNESoveviveeeiensee 278

12.2.1 Using Debuggers with CStrings...........................ccc 282
123 SeHS ..o e 284
12.4 Multiway Branching; Pascal case and C switch Statements 287

vi

Contents
13, SeEIMENLS. ..ottt ittt ittt iattrisastastasssansoresssassenacnansaresaes 293
13.1 Segments and OffSELScooiiiiiiiiiiiiiii e 294
13.2 Segment REGISIEISoviitiiiniii i e e e 297
13.3 Defining SEGMENLS ..ottt e 299
13.4 The ASSUME STACIMENL ..ottt ittt it ererertenerreniereirinereensreens 300
13.5 The Program Segment Prefix (PSP).....c.ooviiiiiiiiiiii e, 311
13.6 Debuggers and SEEMENLSc.ovvviiriieiniiiiiiiii i e 320
13.6.1 Turbo Debugger and Segmentscociviiiiiiiiiiiiiinnennenn, 320
13.6.2 CodeView and SEEMENIScooviiiiiiiiiiniiiiiiiirereiine e neanns 320
13.6.3 Debug Example 7........ccoiiiiiiiiiiiiiiiiriec e 321
13.7 A Little Something Extra: Pointers..............ooooviiiiiiiiiiiiiiiiii e 322
13.8 MemoOry MOGEISooniiiiiiiii e e 325
14. Procedures and High-Level Languagesccceeuvuieerenreienrerencnsecensecsnsenns 335
14.1 Procedures and the Stackcccivviiiiiiiiiiiiiiiiiic e 336
14.2 A Little Something Extra: Communicating with High-Level Languages 349
14.2.1 Turbo Pascal........coiiiiiii e 350
14.2.2 MICrosOft C. ..o 352
14.3 A Little Something Extra: Inline Assembly Language in
High-Level Languages...............ooooiiiiiiiiiiiiiii e 356
14.4 A Little Something Extra: Parameters and Pointers.................cccoovvevinn.., 358
15. Applying Assembly III: Multiple-Precision and Decimal Arithmetic 367
15.1 Multiple-Precision Arithmeticcooouiiiiiii i 368
15.2 The “Minimal Standard” Random Number Generator............................... 382
15.3 Decimal AfAMEC.ouuviiin it et 387
16, INEEITUPLES...ceueviniiiniiiiiiiiiiiiiietereenieiteeeeeeanierereranesensesssosnneesnnesnnsennns 395
16.1 Generalities AbOut INterruptsooooviiiniiiiiiiei e, 396
16.2 Interrupt Processing onthe 80X86ccoouviineiiiineinaieiii, 398
16.3 Applications: Timing and Debuggers..................ccoovveiueeieeniinsininninn, 401
16.3.1 Reading the Clock and Timing Operations..................c...o.ovvvunnnn. 401
16.3.2 Interrupts and Debuggerscooooiiiiiii i 403
16.4 Interrupt HANAIETSooouviiiiiiiiii e 405
16.5 A Little Something Extra: A TSR (Terminate and Stay Resident) Program...... 411
16.6 A Little Something Extra: Caveats for Interrupt Hackers 421
16.7 A Little Something Extra: Simultaneously Executing Programs................... 422
16.7.1 Race Conditions...............cuuiviiiiiiiniieiiiiie e e e eeeeeeees 422
16.7.2 Semaphores: An Abstract Method of Synchronization...................... 426
16.7.3 Using Semaphores to Solve Race Conditions................................ 426
16.7.4 Implementing Semaphores onthe 80X86 427

16.8 A Little Something Extra: A Short History of Interrupts 429

Contents

17. Conditional Assembly and More on MacroScccvevervevnrerarerneenenernreveneans 433
17.1 Generally Applicable IFSoooiiiiiiiiiiiiii e 435
17.2 TFs Usable Only in MacroS........ocouiiiiiitiiit i v e 440

18. File ProcCessingccovveieiiiireiniiioiiiiiiiiiiatisasecssesessisssesssassansesnsnssssasnsans 449
18.1 Handles and Opening, Creating, and Closing FileSccocoeviiinininnn.n. 451
18.2 BasiC File Operationsccciiviiiiiiiiiiiiiiei ittt ier e eeee s 454
18.3 Random File ACCESSINME.ouiuiiiiiit it v et ee e 459

18.3.1 The _LSeeRk MACIOcooiiiiiiiiiii i e 460
18.3.2 Applications of _LSeek I: Log, a Message Logger........................ 460
18.3.3 Applications of _LSeek II: Tail, an End-of-File Displayer.............. 464
18.3.4 Writing the _LSeek MACIOovvieiniiiieiie e e e 466
18.4 A Little Something Extra: Redirecting STDERRcocvvvvnennennn... 469
18.5 The Utility Routines ParseCmd, CCheck, and WChecK......cc.evvvvevnennn... 479

19. String Processing INSEIUCLIONSc...vvueeiruerieniieeniierrnierenereneeeseseeeresasnanns 489
19.1 The String Operations..............coevvuiiiiiiiiiis i 490
19.2 The REP INStruction Prefixescooeiiiiininiiinei e 496
19.3 The TailProgram Revisitedcooouviiiniiineiioesiie e 501

20, VIdEO BASICSocuniiiniiinntiirneiiniiretnierateertnieerneseenneessessonsesnsessnnsesnessnnes 505
20.1 Display HAFAWATIEoiiiiimiiiiiiiie e 507
20.2 TEXEMOGEoovniiiiiii e e 509

20.2.1 Int 10hBIOS Calls for TeXt MOdEccovvvrereeresisiieinin, 510
20.2.2 Direct Access to Display MEMOTYc.ooveueeeineeeieiiinsiiiii, 514
20.2.3 Hardware I/O: CGA SNOWuiviiiiniie e 519
20.3 Simple VGA GraphiCs.........cooouiiiiiiiiiie e 522

21. Other CPUs: 80286, 80386, 80486, and COProcessOrs....uueueucueenreeneaenennnenns 537
211 TREBO2BOooiiiiiieeeie e 538
21.2 The 80386 and 80386 SX.........oviiiiiiie et 544

21.2.1 The 80386 REGISIET SEl....u.ivvuiieniiee e eeee e 545
21.22 AQAIESSING.oouviniiiies e 545
21.2.3 New INStrUCHONSuvviviiee e 549
213 The 8086 ...t 559
21.4 Numeric Coprocessor ChiPSoeevuuneeeriereeiee e 559

ADSWETS 10 Selected EXEICiSeS......cvvuuruirirunerrrrurererueneeemenseesnneeesesnnesenmnssemnns 567

Appendix A The IBM Extended ASCII Character Setouuueeeeeennenneeeoonn, 605

Appendix B 80X86 INStructions.....ccceeureuuueuureeeireeieeeerererenesnmemmsnnnsssesesossons. 608

Appendix C The ED Editor...............uovumimmmieriiriireeiieeiieieeeeneanraeeeeenenneennonn 629

vii

