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Preface

In this book 1 try to give a readable introduction to the modern theory of
the Fourier transform and 1o show some interesting applications of that
theory in higher analysis. The book is directed to students having only a
moderate preparation in real and complex analysis. More exactly, I suppose
the reader to be familiar with the elements of real variables and Lebesgue
integration and to have some knowledge of analytic functions. Further along
in the book both Hilbert spaces and LP-spaces play a role, but the reader is
presumed to know only a little about either topic, much less, in fact, than
appears in any standard modern real variable textbook.

Much of the material the student is expected to know is reviewed in the
first part of the book, which also serves to establish our conventions of
notation and terminology. Some topics from advanced calculus and analytic
function theory are treated here. There have also been adjoined brief dis-
cussions of linear topological spaces, analytic functions of several variables,
as well as certain aspects of convexity; these subjects are perhaps not strictly
needed for the study of the Fourier transform as we undertake it.

Not everything in Part I is needed for the study of Part 1I which presents
the theory of distributions on the n-dimensional real space as well as the
theory of the Fourier transform for temperate distributions. The machinery
developed in Part I makes it possible to obtain significant results in harmonic
analysis in a fairly simple and direct way; this is done in Part II1. The whole
book can be covered conveniently in a one-year course if one or two special
topics in the third part are omitted.

Much of the book closely follows the lectures in harmonic analysis
given by L. Hormander at Stockholm University during the academic year
1958-1959. However, a number of topics covered in those lectures have
been omitted, while a good deal of potential theory and analytic function
theory has been adjoined; it would be surprising if Professor Hérmander
cared to acknowledge the result as his own. Nevertheless, almost everything
in this book has been taught me by L. Hormander and N. Aronszajn.

—



vi PREFACE

There are certain inconsistencies in the presentation. To make the book
accessible to as wide a readership as possible I have avoided the treatment of
distributions on manifolds and never refer to an exterior differential form.
This has made it desirable to accept the Green’s formula without proof,
although it is only needed here for spheres. Sometimes a theorem is proved
with the tacit assumption that the functions or linear spaces occurring in the
argument are all real, and later that theorem is invoked in a context where
the scalars are complex. This abuse is preferred to the repetition of some
Incantation assuring the reader that the arguments may be modified to cover
the case of complex scalars. I have tried to make the notations as traditional
and natural as possible, but have not been able to avoid some trivial am-
biguities. Thus, for example, a system of points in R" is generally written x, ,
although the same notation is used for the coordinate functions themselves.

A book covering such a wide range of material is bound to contain mis-
takes. These, 1 think, are unimportant, so long as the book conveys the
mathematical spirit of the apostolic, nay, the Petrine succession, extending
from Gauss, Riemann, and Dirichlet, through Hilbert, Courant, Friedrichs,
and John.

March, 1969 WIiLLIAM F. DONOGHUE, JR.
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PART 1

INTRODUCTION

1. Equicontinuous Families

Let X be a metric space with the metric d(x, y). If f(x) is a uniformly
continuous real or complex-valued function defined on X, its modulus of
continuity is the function

o(t) = sup| f(x) = f(»], dx,y)=t,

which is defined for all positive ¢. w(?) is monotone nondecreasing in ¢ and
approaches 0 as ¢ does. Since it is not always necessary to operate with the
modulus of continuity of a function, we will say that any function w*(z) which
is monotone and vanishes as ¢ approaches 0 and which satisfies the inequality
o(t) £ w*(t) is a modulus of continuity for f(x). The function f(x) is Lip-
schitzian with Lipschitz constant M if w*(t) = Mt is a modulus of continuity
for it; it is Lipschitzian of order a if a function of the form w*(¢) = Mt*
will serve as a modulus of continuity. In practice, only values of a« which are
smaller than 1 are of interest; one easily shows, for example, that on the real
line a function Lipschitzian of order a for a > 1 is necessarily a constant.

Let & be a family of functions defined on the metric space X; the family
is called equicontinuous if there exists a fixed modulus of continuity w(z) which
serves for all functions in the family.

Theorem (Ascoli-Arzela): Let & be an infinite equicontinuous family
of functions on the compact metric space K which is uniformly bounded,
that is, | f(x)| £ M for all x in K and all fin #; then & contains an infinite
sequence f,(x) which converges uniformly on K.

PROOF: The proof is essentially that of the Bolzano-Weierstrass
theorem. For any small positive ¢, there exists a finite set F =[x, x,, ..., X,]
of points of K such that every point of K is in an ¢-neighborhood of at least
one point in F. (This is just the assertion that the compact K is totally
bounded.) For the same &, we divide the circle |z| £ M into / disjoint sets G;
of diameter at most . Next, we partition the family & into /" disjoint sub-
families; each subfamily being described by /" assertions of the form f(x;) in
G;. Since # is infinite, at least one of the subfamilies is also infinite, and
for any two functions f;(x) and f(x) belanging to the same subfamxly, we
have .

‘.fl(x) — ()| £ 1/i(») =[]+ [ filx) — [0 + | f2(x)) = f2(x)] 'V

If we choose x; in F so that d(x;, x) < ¢, the first and last terms are bounded
by w(e); the middle term is bounded by ¢ since both numbers f,(x;) and fa(x)

3



4 I. INTRODUCTION

belong to the same set . thus, independently of x,
00 = [(x)] S 200(e) + €.

Accordingly, for a fixed small #. we find an inﬁnile subfamily %, of # having
the property that any two functions in &, differ by at most 2w(e) + ¢ any-
where in K. Passing to «,2 and arguing wnh the family #,, we obtain an
infinite subfamily associated with the bound 2w(e/2) + (¢/2), and continuing
in this fashion, we obiain an infinite descending sequence of subfamilies .7,
associated with the bounds 2w(e2™") + 27 "¢ which converges to 0. We have
now only to choose f,(x) in the family &, distinct from the previous /,(x) in
order to obtain an infinite sequence converging uniformly on K.

The sequence f,(x)} obviously converges to a continuous limit f*(x) which
in general does not belong to the family 4 ; however, the function w(t) is a
modulus of continuity for /* and | f*(x)] £ M on K.

When the metric space X is the union of a sequence of compact sets and
the family of functions % is uniformly bounded and equicontinuous on each
compact, we can evidently extract a subsequence which converges uniformly
on all compact subsets of X.

An important special case of the foregoing arises in function theory. We
suppose that & is a family of functions analytic in some region G and uni-
formly bounded there by M; if K is a compact subset of G, it can be sur-
rounded by a rectifiable curve C lying wholly in G. We let d denote the
distance from K to the curve C. and note that for any f(z) in the family and
any zin K

, | fOd¢
|j( l_l2ch(z—g)2
ML

g—d—z‘y

where L is the length of the curve C. Thus the derivatives of functions in &
are uniformly bounded on K and hence those functions are all Lipschitzian
with the same Lipschitz constant, that is, the family is equicontinuous on K.
Accordingly, when the family is infinite, we can extract an infinite sequence
which converges uniformly on all compact subsets of G to a limit which is
also analytic in G and bounded there by M

We apply this remark to prove the following theorem which may easily
be generalized.

Theorem: Let ftz)be analytic and bounded in G, the sector 0 < |z| < R,
larg z| < ¢, and suppose /(x) approaches O as the real x does; then f(z)
converges to 0 uniformly in the sector larg z| £ d for any d < c.



1. EQUICONTINUOUS FAMILIES 5

PROOF: (See Fig. 1) We suppose R = 2 and consider the compact K
defined by 4 < {z| <1 and |arg z| £ d as well as the sequence of functions
Jx(2) = f(27"z) which is uniformly bounded in G and hence equicontinuous
on K. We may extract a subsequence converging uniformly on K to an analytic
limit £*(z). On the intersection of the real axis with K, we have f,(x) con-
verging to 0, whence f*(x) = 0, that is, /* vanishes on the real axis and is

Fig. 1.

therefore identically 0. Since this argument holds for any convergent subse-
quence of £,(z), it follows that the original sequence f,(z) converged uniformly
on K to 0. Therefore, for sufficiently large n, | f,(2)] < ¢ on K, which means
{f(2)| < eon the set |z{ < 27". Thus f(z) converges to 0 uniformly in the angle.

An extended real valued function u(x) on a metric space X is lower semi-
continuous if it never takes the value — oo (although + o is permitted) and
for every real 4 the set defined by the inequality w(x) < A is closed. The upper
semicontinuous functions are the negatives of the lower semicontinuous ones,
and the continuous functions are exactly those which are both upper and
lower semicontinuous.

If K is a compact subset of X and u(x) is lower semicontinuous on K,
then that function is bounded from below on K, since otherwise the sets K|,
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consisting of points x in K for which u(x) £ —»n would form a decreasing
sequence of nonempty closed subsets of K; these would have to have a point
in common at which the function took the excluded value — . The function
actually attains its infimum on K, for if 4 = inf, _x u(x) then the subsets K,
of K defined by u(x) £ /4 + 1/n have a nonempty intersection K, upon which
u(x) = A.

Theorem: Let f,(x) be a family of continuous (or lower semicontinuous)
functions on the metric space X and F(x) = sup f,(x); then F(x) is lower
semicontinuous.

PROOF: It is evident that F(x) cannot assume the value — oo, and
the set F(x) < 4 is the intersection of the family of closed sets f,(x) < A and
is therefore closed.

A converse to the previous theorem holds if the space X is compact.

Theorem: Let u(x) be lower semicontinuous on the compact metric
space X; there then exists a monotone increasing sequence of continuous
functions u,(x) converging to u(x).

PROOF: Since the function u(x) is bounded from below, there is no
loss of generality in assuming that u(x) is nonnegative on X. The compact
metric space X is separable, and the open sets have a countable base, namely,
the spheres S(x,,r) of rational radius centered about points of a given
countable dense subset of X. For every pair of such spheres, S" and S”
where S’ is contained in S”, we select once and for all a continuous function
f(x, S, 8") taking values in the interval [0, 1], which vanishes outside S
and equals +1 on S’. Only a countable family of functions f(x, ', §”) is
obtained in this way. For a given positive ¢ and every point x, in X the set
u(x) > u(x,) — € is an open sel containing x,; there exists, therefore, a pair
of spheres S’ and S" in the countable base such that x, is contained in S’
which in turn is contained in S”. Let r be a rational number in the interval
(u(xy) — 2e, u(x,) — €): now rf(x, S’, ") is a continuous function satisfying
the inequality rf(x, S’, S”) € u(x) everywhere on X. Only countably many
functions of the form rf(x, S’, S”) appear, and it is obvious that u(x) is the
supremum of this family if ¢ approaches 0. If that family is enumerated in
any way and written g,,(x), the functions

u,(x) = max g,(x)
m<k
form a monotone increasing sequence of continuous functions which con-
verges to u(x).
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2. Infinite Products

Let a, be a sequence of complex numbers; we consider the sequence of
products: p, = [[i=1 @ = a\a,a; ** a,. Obviously, if one of the g, is 0, the
products p, vanish for all large n and the sequence of products converges
trivially to 0. We suppose, therefore, that none of the factors vanishes: it is
then clear that the products p, converge to a limit P which is not zero and
which is finite if and only if log p, converges to log P for an appropriate deter-
mination of the logarithm, and, therefore, if and only if the series Y log a,
is convergent. Now, if that series does not converge absolutely, it will be
possible, by a suitable rearrangement of its terms, to make it converge to
some other limit or to diverge. Accordingly, the partial products converge to
a finite, nonzero limit independently of the order of the factors, if and only
if the series Y |log a,| converges to a finite sum.

From the convergence of this series we deduce lim, log a, = 0, and there-
fore lim, a, = 1 as we would expect. In studying the convergence of the
product, then, we can assume that the numbers g, are sufficiently close to I.

Consider that determination of the logarithm which is real on the real
axis; we have log I = 0 and the logarithm is analytic in a circle of radius 1
about z = 1. We can divide that function by (z — 1) to obtain a quotient
. log z/(z — 1) = q(z) which is analytic in the same circle and such thatg(1) = 1.
It is now clear that there exists R > 0 such that in a circle about z =1 of
radius R, 3 < |9(z)] < 2, and therefore,

'—g-' < |log(1 + z){ < 2|z[, forall [z|<R.

We write a, = | + b, and know that b, converges to 0. Hence, for large 4,

b
L;—‘ < {log(l + b,)|

= |log a,} < 21by]

and the convergence of the series of logarithms is completely equivalent to
the convergence of the series Y |by] .

To sum up: The infinite product [ (1 + ;) converges to a finite, non-
zero limit independently of the order of the factors, if and only if the series
Y |b;| converges and no by is —1.
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As an example we consider the infinite product
-y 2

(1~ 5a) = PO

1

For any fixed value of -, the series Y |z%/n?n?| evidently converges, thus P(z)
is well defined and fintte for all z, and vanishes for z of the form nn and only
at such z. If P,(2) is the mth partial product and |z] £ R, then

2

{1 55)
§]m](1+n§—;)

i

|Pn(z)] =

= P,(iR)

i' R?

It follows that the sequence of partial products is uniformly bounded in the
circle of radius R, and hence contains a subsequence converging unitormly
on that circle to an analytic imit which necessarily has the value P(z) at z.
The uniqueness of the limit shows that the passage to a subsequence was
unnecessary, and since R was arbitrary, it follows that P(z) is an entire
function. Although true. it is not so clear that P(z) = sin z/z. A proof will
be given in Section 44.
Let us recall another theorem from the theory of functions:

Schwarz’s Lemma: Let /iz) be analytic in the circle jz] <1 and
bounded there; set M = sup|f(z)i, [zl < | and suppose f(0) = 0. Then the
function A(z) = f(z)/z is also analytic in the circle and suplh(z)] = M.

PROOF: From the power series expansion we see that we can divide
out z, and so A(z) is analytic in the circle. We pass to a subcircle of radius
r =1 — £ where the positive « 1s small. For that subcircle, the function [A(2)]
assumes its maximum on the boundary, and that maximum is therefore of
the form

f(re®) ]
ro !

h(re')] =

M
1 -¢

JIA

Since ¢ is arbitrarily smuil. i(2)] Is bounded by M.
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We obtain virtually the same result if we change the hypothesis slightly

and suppose that f(a) = 0 for some a in the unit circle and divide out the
function

bz =427 2

al—az’
this linear fractional function has a zero at g, a pole at 1/a and is regular in a
neighborhood of |z| =1 where it has absolute value 1. (Check this by
computing the absolute value of h(e').) If we divide f (2) by h,(2), we find, as
before, that the quotient has the same bound M in the circle.

We consider next a function f(z), analytic in the circle and bounded by
M ; we suppose also that f(0) = p > 0. Let g, be the sequence of zeros of f(2);

in general, this sequence is infinite, and we find it convenient to enumerate
the zeros in such a way that

O<lal Sl slal £

1t should be noted that if a is a zero of order v, then a occurs v times in the
sequence. Thus, each zero is counted as often as its multiplicity requires.
Then, successively, for each a,, we divide out hak(z), the quotient each time
being bounded by M. In particular, at the origin we have, for any n,

0< "p

U la.l

<M,  whence 1% <Tllad-

k=1

Since |a,| is always positive and smaller than 1, the sequence of partial
products diminishes to a nonzero limit and hencé the infinite product con-
verges. We deduce that the series Z(l — |a,}) converges. Thus we have proved
half of the following theorem, due to W. Blaschke.

Theorem (Blaschke): A sequence a, of complex numbers in the unit
circle is the set of zeros of a bounded analytic function with appropriate
multiplicity if and only if the series } (I — |a,|) converges.

Note that 1 — |a| is the distance from a to the boundary of the circle. To
complete the proof of the Blaschke theorem, we construct, for a given
sequence a, satisfying the condition, a bounded analytic function having
exactly those zeros. We may suppose that no g, is zero. The function in
question is the Blaschke product

B(z) = [] ha(2)-
k=1 .
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which vanishes whenever z = g, . For other values of z, the product converges
to a finite, nonzero limit, since

—by(z) =1 — h,(2)

a, + z|a,|
a(l - 5:‘2)’

whence |b,(2)| < 2(1 — |a)/(1 — |z]) and therefore Y 16i(2)| converges. The
partial products B,(z) = ]—[:=lh,,k(z) are rational functions which have the
bound 1 in the unit circle; the sequence of these products is then uniformly
bounded for |z] < 1. Hence, there exists a subsequence converging to a limit
B(z) which is analytic in the circle; B(z) must then coincide with the infinite
product. This completes the proof. Note that by an ingenious choice of the
numbers a, we can construct a bounded analytic B(z) which has the circle
|z} = 1 as a natural boundary.

The theorem of Blaschke and Schwarz’s lemma combined permit us to set
_up a canonical factorization for functions bounded and analytic in the circle:

f(2) = C2"B(z2)e' @,

‘where m is an integer 2 0, C a constant, B(z) a Blaschke product, and
9(2) = u(2) + iv(z) is analytic with u(z) < 0. The integer m is the multiplicity
‘of the zero of f(z) at the origin, if there is one, m being equal to 0 otherwise,
and the Blaschke product is completely determined by the other zeros of f(z).
Because of the argument above, the ratio h(z) = f(2)/z"B(z) is bounded in
the circle and C should be taken as its bound. It follows that the function
h(z)/C has no zeros in the circle and is bounded there by 1; its logarithm is
therefore analytic in the circle with a negative real part.

=(1-lal)

3. Convex Functions

We shall consider only functions f(x), real and finite, defined on an open
interval (a, b).
Such a function is midpoint convex if and only if for all x, y in (a, b).

f(x-;y) Sf(x)+f()’)’

= 2
and is said to be convex if and ovnly if for all x, y in (a, b) and all r in the closed
interval [0, 1]
Sax+ (1 =1y S 1f () + (0 =0 f().
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The convex functions are clearly midpoint convex: we have only to set ¢ = 4;
we shall show that any midpoint convex function which satisfies reasonable
further conditions is convex.

That there exist midpoint convex functions which are not convex is shown
by the following example: consider the real numbers as a vector space over
the field of rational numbers, and let {x,} be a Hamel base; every x in R is
representable in a unique way as a finite sum with rational coefficients

x =3 c(x)x;.

The coefficients ¢,(x) are “linear” functions of x taking rational values;
since 4 is rational,

o252) - 2t o

and, therefore, c¢,(x) is midpoint convex. Since it is not the constant function,
and assumes only rational values, ¢,(x) is not continuous, and therefore not
convex, since, as we shall see, convex functions are continuous.

Theorem:  If f(x) is midpoint convex and continuous, then f(x) is’
convex.

PROOF: We first show, by induction on », that the convexity inequality
above holds for all x and y in (g, b) and all ¢ of the form p/2". The inequality
being shown for n, we pass ton + 1: let

14

q
Z= +1X+§n—+gy

2"
=-1—[£x+—r-y+y], where p+ g =2"*",
22 2"

and where we may suppose that p < g, whence p <2"<g=2"+r. Now

@3 [£(E572) + 0]

14

< 55 S + 3o ).

Since the set of ¢ of the form p/2" is dense in the unit interval, from the con-
tinuity of f(x), we obtain the full convexity inequality, that is, f(x) is convex.
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Theorem: If f(x) is midpoint convex and is discontinuous at a point
X, in (a, b), then f(x) is unbounded on every subinterval of (a, bY, and hence
everywhere discontinuous.

PRroOF: We may suppose that the interval is of the form (—a, a),
that x, = 0 and that f(0) = 0. There exists a sequence x, converging to 0 for
which f(x,) converges to a limit m # 0; we may suppose m > 0, since. other-
wise, we pass to y, = —Xx, and use that sequence instecad. Now the sequence
2x, also converges to 0, and we have

2f(x,) < f(0) + f(2x,)
=f(2x,)

and therefore lim inf f(2x,) = 2m. Repeating the argument lim inf f(4x,) 2 4m
and inductively lim inf /(2*x,) = 2. Thus f(x) is not bounded near x = 0,
and there even exists a sequence x, converging to O upon which f converges
to infinity.

Let z be an arbitrary point of the interval; the sequence z + 2x, converges
to z, while

oo {2
<f(: F2x,)+ f(—=z)
— 2 M

Since the left-hand side converges to infinity with increasing n, the right-hand
side also converges to infinity, whence f(z + 2x,) converges to infinity, and /'
is not bounded near the point z. Since z was arbitrary, it follows that f(x) is
bounded in the neighborhood of no point.

Since convex functions are bounded on subintervals, it follows that convex
functions are continuous.

The following beautiful theorem is due to Sierpinski.

Theorem (Sierpinski): If f(x) is midpoint convex and Lebesgue
measurable, then it is convex.

PROOF: The theorem is a consequence of the following even str nger
result proved by Ostrowski.

Theorem (Ostrowski): If f(x) i1s midpoint convex and bounded on a
set £ which is Lebesgue measurable with positive measure, then f(x) is
convex.



