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Introduction

Metal Fatigue has traditionally been related to stress. Since the works »f
Manson ([1.1] and Coffin {1.2], however, it has become clear that as well as
stress, strains must be taken into account too. If this is done, then w:
can get a fairly adequate picture of a material’s fatigue behaviour. Thc
reason for this is that in fatigue there is usually an elastic-plastic
correlation between stresses and strains, quite often in the region of the
endurance limit. Therefore the traditional stress-strain curves for
monotonic loading are completed by the stress—strain curves for cyclic
loading and the traditional stress life curves by the strain life curves
for elastic, plastic and. total strains. Mean stress effects are iescribec
by so—called mean stress (damage) parameter life curves.

Stress—strain curves, strain life curves and mean stress parameter life
curves for cyclic loading are the components of "materials data for cyclic
loading”.

These materials data provide the basis for materials assessment by direct
comparison of data or characteristic values and for estimating the crack
initiation lives of structural parts under constant and variable amplitude
loading.

In the latter case, local stress-strain paths are evaluated by applying a
load notch relationship from finite element calculations or from
approximation formulas such as Neuber’s rule .¢°g = Ktz‘S‘e (Kt = stress
concentration factor, S = nominal stress, e = nominal strain, mainly e =
S/E), and the stress—strain curve for cyclic loading of the material being
studied. With the help of the material’s life curve — and in the case of
random loading 'taking damage accumulation into account - the crack
"initiation 1lives of structural parts can be calculated. To achieve
satisfactory accuracy with this evaluation method, called the Local Strain
or Notch Strain Approach,it must be assumed that the conditions of the .
unnotched specimen for which the materials data have been determined agree
sufficiently with the local notch conditions of a structural part regarding
the definition of crack initiation, surface roughness or finish and the
size of the highly stressed material volume.

The advantage of this method is a great reduction in the cost of évalﬁating
experimental data. Regarding strengths, the multitude of notch effects are
eliminated and transferred to the calculation of local stresses and
strains. Of course, the accuracy of the life estimation depends on the
accuracy of the local stresses and strains calculated, the transferability




of the materials data used and the validity of the damage accumulation rule
applied.

For many years now materials data for cyclic loading have been published in
the scientific literature. However, these data have been collected in quite
different ways. In this book, these materials data have been gathered
together, evaluated according to uniform approach and methods and compiled
on standardized data sheets.

In gathering the data, special attention was given to ensuring that as far
as possible the shape of the specimens and the experimental procedure
conformed to ASTM E 606-80 [1.3). ASTM E 606 is recommended for further
evaluation of data on cyclic loaded materials.

The data are now published for the first time in a handbook, suitable for a
wide range of applications and divided into the following eections
according to material groups:

Part 4: Unalloyed Stee}s

Part B: Low-Alloy Steels

Part C: High—Alloy S?eels

Part D: Aluminium and Titanium Alloys
Part E: Cast and Welded Metals

.

Each data sheet takes up a maximum of four pages. The first page gives a
description of the material and testing procedure. In the upper left corner
the material designation is given in the following order:

- designation according to DIN 17 006 or DIN 1725
- designation according to DIN 17 007
~ usual commercial designation (e.g. ASTM, SAE, JIS)

The chemical composition is always given in weight percent. It corresponds
to the values given in the literature referred to.

The second and third pages show the diagrams for

- stress—-strain curves for monotonic and cyclic loading
~ strain 1ife curve




- mean stress (damage) parameter life curve according to the parameter
of Smith, Watson and Topper [1.4].

Unless indicated otherwise in the plots, the experiments were carried out
at room temperature in laboratory air.

The diagrams for the stress—-strain relationships contain at the most three
curves, ope for monotonic and two for cyclic loading, the latter being
evaluated from incremental step tests and constant amplitude tests, All
three curves can be described approximately by an analytical function, for
monotonic loading by the equation

N ; + (;)lln (1a)
and for cyclic loading by the equation

. .
8g = ta,e * t3,p = _Ea., (‘;‘f)lln ' (1p)

fhe values of the constants K, n and k', n’ are given in the data sheets. They
Jere evaluated by regression analysis (minimum of the squares of the distances
rectangular to the regression line) from the values of the appropriate
3xperimental data in the literature referred to. FPor unalloyed and low-alloy
steels the analytical description of the stress—strain curve for monotonic
loading according to eq. (la) is sometimes only meaningful for strains beyond
%, because yield strength and Lider’s area cannot be accountdd for in that
:aquation. The stress-strain curves for cyclic loading were determined on the
sasis of constant amplitude and/or incremental step test data. Unless noted
>therwise in the data sheet, the results are valid for a stabilized state or
aalf fatigue life, respectively. The stress—strain curves obtained from
sonstant amplitude tests are represented by a solid line in the experimentally
proved part and by a dashed line in the remaining part. Their constants X' and
o’ are denoted once more in the diagrams. The stress—strain curves obtained
from incremental step tests are drawn up to the maximum strain amplitude
tested. Irrespective of the number of curves drawn in the diagram, the legend
always contains the symbols for all three curves. ’

The analytical description for the strain life curves corresponds to the
functions of Manson {1.5] and Morrow [1.6]: )




ta, e = 2L - (am)P ()
E

ta,pN) = ege (2M)°© (3)

ea(N) = e5,e(8) + &5, p(N) (4)

“

The number of cycles N characterizes crack initiation or rupture of the
specimen according to its loading conditions.

For datasets with no runouts, or only a few, the constants af'. b, eg’ and ¢
were evaluated on the basis of experimental o e, ~N data from the literature
by the aforementioned regression analysis for elastic strains and plastic
strains separately. If only a few runcuts were available, they were neglected
as they give no reliable information about the endurance limit. There is no
significant difference between these evaluations of the constants and those
obtained accordimg to ASTM E 739-80 [1.7)., even thoush the types of regressior
analysis are slightly different.

For some data sets with a large number of experimental results in the region
of the endurance limit, the constants were evaluated by maximum likelihood
method, This was again done separately for elastic and plastic strain
according to a proposal made in [1.8] for the evaluation of S-N-curves. The
endurance .limits obtained are denoted by horizontal straight lines in the
strain life curves. The -endurance 1limit for total strain was obtained
according to eq. (4).In general, the endurance limits obtained here must be
seen as approximate values as they are based only on a few experimental
results of unbroken specimens (runouts).

One of the three equations (1b), (2) and (3) is dependent on the remaining two
equations, Therefore a dependency of the constants exists in the form n'= b/¢
and K'=v /c’b/ €, This dependency, however, bas been neglected in this handbov
as it requires a large amount of calculation in the statistical analysit

1
Comparative studies show that this dependency is sufficiently fulfilled evd’ \

though the three equations are treated as independent.

v

Unless noted otherwise, experimental results with plastic strain amplitudes o
less than 0.01% have been neglected in the regression analysis, as they aainl




lead to an unsatisfactory description of the life curve according to eqs.
(2)-(4) in the low cycle regime, All three life curves for elastic, plastic
and total strain are denoted with their appropriate constants irn the diagram.
The curves are solid in the part where experimental results have been taken
into account for regression analysis and dashed in the other parts.

In the diagram of the damage parameter life curve the parameter according to
Smith, Watson and Topper [1.4]

Pgyr = V(og + op)ea” E (5)

was chosen. The analytical description of the damage paraméter life curve is
obtained by using eqs. (2)-(4) in eq. (5) with o = 0 leading to

Poyr (V) =Vog2- (2N)20 + E-apeege (2N) (B¥C) (6)

For reasonsof uniformity, datasets with exberimental results am#o and o#0 were
treated as if the regression line had been evaluated for om#o. From the idea
that Pgun accounts for mean stresses, Psm.—life curves evaluated from the
expericental results with 0,0 should be plotted into the diagrams with
experimental results cma‘-O, leading to better coincidence between 1life curve
and experinents.

For uniformity, the experimental results for high and low temperatures are
presented in a PSWT diagram as well. How far Smith, Watson and Topper’s
parameter is valid for high and low temperatures has not yet been proven,

The criteria for the solid and dashed part of the curves are the same as for
the strain life curves. The endurance limit obtained by maximum likelihoo« Was
calculated according to eq. (5) and is indicated in the plot.

The results of stress— and strain-controlled constant amplitude tests are
listed on the third and if necessary on the fourth page, specifying the
following:

- specimen number

- stress amplitude

- mean stress

- agplitude of total strain
- number of cycles
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Unless stated otherwise, stresses and strains are noted in the data sheet for
stabilized material behaviour or half failure life.

Blanks in the data sheets indicate that the information was not given in the
literature referred to.
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