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that accompany the text serve to help the reader in analyzing the
theoretical material and problems.




V.A. ILYIN and E.G. POZNYAK

Fundamentals

of Mathematical
Analysis

Translated from the Russian
by Irene Aleksanova

PART 1

MIR PUBLISHERS MOSCOW




First published 1982

Ha anzautickom ssvixe

© Man-so «Hayxa», I'maBsas pefakuas $usHKO-MaTeMaTHIECKOR
anrepatypu, 1982

© English translation, Mir Publishers, 1982




" B. A. MIILYH, 9. T. IO3HAK

OCHOBEI
MATEMATHUUYECHOTO AHAJIM3A

Yacte 1

HszpatenscTBo «Hayka» Mockea







PREFACE TO THE RUSSIAN EDITION

The book is based on the lectures delivered by the authors at the
Physics Department of Moscow University.

In the course of systematic exposition of the material, the authors
gave prominence to the most important concepts and theorems, the
most significant of the latter being called fundamental theorems. The
authors tried to give the formulations of new concepts and theorems
not long before their direct application.

The sequence of presentation of the material corresponds to that
accepted at the Physics Department of Moscow University. The
chapter “Preliminary Information on the Main Concepts of Mathe-
matical Analysis”’, in particular, comes before the exposition of the
systematic course because this chapter deals with some very impor-
tant physical problems and discusses mathematical means for their
solution. Thus it becomes clear from the very beginning what prob-
lems and concepts constitute the subject matter of mathematical
analysis. Our lecturing experience shows that such a preliminary
elucidation of the range of problems treated in the course of the
analysis makes it appreciably easier for the students to understand
the basic mathematical concepts.

The authors paid due attention to the ever increasing role of com-
putations and methods of approximation; that is why they tried to
use algorithmic form in proving theorems and carrying out cal-
culations wherever it was possible. In Chap. 12, in particular, the
main emphasis is laid on the algorithmic aspect of the methods of
approximation and only then is the method substantiated.

In addition to the main part of the material, the authors consider
it possible to include some sections given in small type.

In writing the book, the authors borrowed some methodical
techniques from the course of lectures by N.V. Efimov as well as
from the well-known books by E. Goursat, De La Vallée Poussin and
F. Franklin.

The authors express their deep gratitude to A.N. Tikhonov and
A.G. Sveshnikov for their valuable ideas and instructions and also
for their enormous help at all stages of writing this book.

Thanks are also due to I.A. Shishmarev whose editing of the hook
was very beneficial.




6 Preface

The authors also want to express their gratitude to N.V. Efimov
and L.D. Kudryavtsev for a large number of methodical instructions,
B.M. Budak and S.V. Fomin for reviewing separate chapters and
making their remarks, and B. Khimchenko, P. Zaikin and A. Zolo-
tarev for their help in preparing the manuscript for print.

The authors consider it necessary to point out that to a large
extent their pedagogical views were influenced by their talks with
I.M. Vinogradov and A.A. Samarsky, to whom they are also very
thankful.

V. Ilyin, E. Poznyak

PREFACE TO THE ENGLISH EDITION

The present book is a translation into English of the 4th
Russian edition of Fundamentals of Mathematical Analysis, Part 1,
published by Nauka in 1982.

The previous edition has been revised and expanded: some new
material has been introduced and a number of changes made,
which were called forth by the desire of the authors to improve
the exposition and to reflect the growing role of computational
techniques and algorithms.

The authors consider it their pleasant duty to express their gra-
titude to Irene Aleksanova whose thorough work on the transla-
tion of the book helped to eliminate a number of inaccuracies
which occured’in the Russian edition.

The authors.
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