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PREFACE

The year 1987 marks the 100th Anniversary of the formation of the first
Canadian Learned Engineering Society, the Canadian Society of Civil Engineering,
which was remamed the Engineering Institute of Canada in 1918. The Centennial
is thereforg of special significance to the Canadiﬁn community of Civil Engin-
eers. The C-odian Society for Civil Engineering (CSCE) Centennial Cor Terence
forms a part.pf the Canadian Engineering Centennial Convention which was
organized fof this occasion.

The Technical Sessions on Developments {ir Engineering Mechanics form a part
of the CSCE Centennial Conference and were held at tne Palais de Congres in
Montreal; Quebec, from 18th to 22nd May 1987. These Technical Sessions were
sponsored by the newly formed Engineering Mechanics Division of the CSCE. The
objectives of these Technical Sessions were to highlight the contributions made
to the field of Engineering Mechanics by leading researchers in Canada. The
sessions organized covered a diversity of topics, primarily in Solid Mechanics,
including Dynamics and Stability of Flexible Structures, Non-linear Elasticity,
Stability of Inflatable and Shell Structures, Composite Structures, Mec;anics
of Yield, Failure and Damage, Computer Modelling, Computer Applications,
Geomechanics and Experimental Mechanics. The contributions recorded in this
volume address the state-of-the-art and current developments in the various
topics.

The Editor wishes to thank the authors for their willingness to contribute
to the volume and for their participation at the Technical Sessions of the
CSCE Centennial Conference. The Editor gratefully acknowledges the support and
encouragement of Professor M.S. Mirza (McGil) University), Past President of
the CSCE whose efforts led to the organization of the Engineering Mechanics
Division within the CSCE. Thanks are also due to Mrs. S.J. Selvadurai for
editofial/assistance and for preparation of the subject index.

A.P.S. Selvadurai

Chairman, Engineering Mechanics Division
Canadian Society for Civil Engineering
Ottawa, Ontario, Canada
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ON NON-SELFADJOINT PROBLEMS IN MECHANICS

H. Leipholz
Depts. of Civil and Mechanical Engineering, University of Waterloo, Waterloo
Ontario, Canada N2L 3Gl

ABSTRACT -

In this paper, stability of elastic structures is investigated. It is own
that an instability process is essentially a dynamic one. The static app: ::ch
to stability can only be followed in the case the problem is selfadjoint.
However, numerous problems, also in civil engineering, are non-selfadjoi
Therefore, essentially a dynamic approach to these problems must be use: . It
is shown how to handle such problems mathematically, and it is shown tf :u they
can specifically occur in the control of elastic structures.

INTRODUCTION

In dealing with stability problems, the civil engineer is used to consider
these as static problems. Take as an example Euler's column, Fig. 1. There is
a load P involved that is said to cause buckling when exceeding a certain limit
of magnitude.. Apparently, no dynamic effects occur. A well established theory
for these so-called "static stability problems” exists. It wag initiated by
Euler (ref.1), developed further by G. H. Bryan (ref.2), E. THEFFLz (ref.3),
St. P. Timoshenko (ref.4), and many others. The civil engtnggr feels comfort-
able studying this theory and remaining, thus, completely in ‘the domain.of
statics. :

P = CONSTANT

Fig. 1. Euler’s column.
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However, there exists also a subject denoted "dynamic stability“. In that
case,. a time dependent, not static 1dading is present. A simple example is a
column carrying a compressive load P* that is not constant, like for Euler's
column, but is a harmonic function of time, Fig.. 2. Under such circumstances,
one is of course not surprised that problems of this nature have to be treated .
by means of dynamics. A corresponding theory has been provided among others
by V. V. Bolotin (ref.5). Yet, a civil engineer might consider the case of
dynamic stability as an exception which, should it ever occur, had to be
dealt with by an appropriate expert who would use a special theory.

P*

* .
P %+P| cos wt

Fig. 2. Beliaev's column.

Recently, also a theory of "nonconservative stability" has been introduced
involving so-called follower forces. It is claimed that, when for a colum a
tangential follower force P, is present, Fig. 3, flutter instead of buckling
takes place for a critical value of Pt although the follower force is not time
dependent. Therefore, something puzzling happens: Flutter, a truly dynamic
process, occurs in spite of all quantities involved in the mathematical
description of the colum being time independent. A civil engineer may
consider such a situation, half incredulous, as something fancy he may not have
to bother with, although a well established theory of nonconservative stability
of elastic systems has been set up by V. V. Bolotin (ref.6), H. Ziegler (ref.7),
and H. Leipholz (ref.8).

The truth is that any instability process, buckling or flutter, is actually
2 dynamic one. Even in the case of the buckling of an ordinary Euler column,

a motion, and therefore a dynamic process takes place: According to Euler's
theory the column passes in the course of buckling through various equilibrium
positions that are adjacent to the original (trivial) one. That is not possible
without a motion of the column. Hence, there is indeed a dynamic effect ’
present which is simply suppressed though in the deliberations of "static”
instabjl{ty. Moreover, it can be shown that it is not the so-called



P, = TANGENTIAL

Fig. 3. Beck's column.

"buckling load" which makes a column buckle. This load makes the column only
prone to buckle by acting as a destabilizing structural parameter. The actual
buckling is caused by the influence of one of the ever present external
"perturbations", for example an impact, an impulse loading, and these are
certainly dynamic loadings. The reason why this is not so cTear follows from
the fact that, again, the occurrence of a perturbation is ignored in the theory
of "static stability” like the motion of the'coldm through a sequence of
equilibrium positions during the buckling process had been ignored.

A1l this is also the case when instability is caused by a follower load.

As before, this load has only the role of a destabilizing structural parameter
while the instability is caused by a perturbation which is also not mentioned
explicitely in the theory. In both cases, (Euler buckling and flutter owing
to a critical value of the follower force), the actual instability is of a
dynamic nature. The reason why that is not equally obvious in both cases is
that flutter is violent and very noticeable while the moving of a column
through a number of adjacent equiHbriuni positions is only a mild form of a
dynamic process.

At this point, the conclusion can be drawn that a theory of dynamic
stability should be adopted as an all embracing theory of a unifying character
and that civil engineers should become acquainted with it in order to be
capable to deal with modern stability problems of all kinds. Subsequently, it
w111 be shown that for example in the context of structural comtrol, which
appears to be an emerging facet of modern civil engineering, specifically
situations involving flutter can occur. Since flutter systems are non-
selfadjoint, also the guestion how such problems can be handled mathematically
is of importance and will be considered.
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DESTABILIZING PARAMETER, DEGREE OF STABILITY, AND PERTURBATION

To fix the preceding ideas, let an analytical approach to an example be
presented. This example is still so simple that the basic concepts will come
through very clearly.

Consider the motion of a mechanical system after it has been subjected to
an external perfurbation. This motion is analytically described by

tlq(t), P, t] = £(¢), } (a)
a

q(0) = q0s q'(O) = éo»

where L is a differential operator, g(t) the "characteristic" of the system

whose stability is to be determined, P the destabilizing parameter, ¢ the
time, f(t) the perturbation. i

" It is common to assume an initial impulse to be the perturbation. Then

A

f(t) = 18(t), I =mgy, &(t) = Dirac function (b)

Since &(t) = 0 except at ¢ = 0, equation (a) can be replaced for ¢ > 0 by

-

L[q(t), P, t] = 01
. I (c)
q(0) = qq, q(0) = 2.

The advantage of working wi}th' ﬁjiylses is that the stability problem as re-
presented by (c) involves a homogeneous differential equation only, and the
perturbation is expressed simply in terms of the initial conditions. Therefore
it is justified to talk in this context of "perturbations of the initial
conditions”, an expression frequently used when stability is investigated.

Let the differential equation in (a)-and the perturbation in (b) be
written down for the buckling problem shown in Fig. 4. The potential energy
of this system is

=2 g2 . B2 o .
V=3F06Z- 56l _ (d)
Its kinetic energy is

r=3 a?éz. - ‘ : .  (e)

Lagrange's technique yields as linearized equation of motion the equation

cmdin. ¢



Fig. 4. Rigid column bearing a masspoint at midpoint and having a restoring
moment at the lower end.

ma?8 - (P2 - e)o = I18(t). , {f)

Comparing (f) with (a) shows that q(t)z @ is the characteristic of the system,
P is the destabilizing parameter, and f(t) = 15(¢) as assumed in (b). More-
over,

I = mab(0) ' , (9)
is the magnitude of the initial impulse that causes the system to vibrate

about its trivial equilibrium position.
The solution to (f) for e(0) = 0, 8(0) = const. is

(o) -

t
[sm/ e =Py . g)a(e)de,
Ym lc - Pli 2
(h)
“8(¢) =__£a.___. sin /u&t.
/m{c - PL) Y ma?
For ¢ # Py, it is a harmonic oscillation with the amplitude
A= __Ia__._ . (k)

e = FL)

A discussion of (k) shows that for P < c/l =P, e MO mpulse of finite
magnitude I could cause the vibration (h) of the colum to assume ah
“infinitely large amplitude 4. As long as P < P .y instability of the
column, i.e. 4.= =, would be possible for an infinite I only. However, I
represents the degree of stability. Hence, the column in Fig. 4 is a system
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with an infinite degree of stability in the context of a linear theory.

Let the value of the destabilizing parameter P approach it The impulse
Iin

I's/ch - Pt), ) (2)

decreases as P tends towards Pcm:t = o/2., It becomes zero for P = Pom:t =c/t.
At that point of time, the column becomes unstable for any arbitrarily small
perturbing impulse.

This discussion shows that, as claimed before, 1oad P is not the "buckling
load". It is only the catalyst of instability but not its cause. The cause
for instability is now as ever the perturbation, as small it might be for
P Fonie

A detatled discussion of the concepts of "destabilizing parameter, degree

of stability, and perturbation” can also be found in (ref.9).

SELFADJOINT STABILITY PROBLEMS

Stabtlity problems in civil engineering are in reality not as simple as
assumed in the preceding section. The simple presentation of the previous
column buckling was only possible, because the column was interpreted as a
Tumped mass system. But civil engineering structures involve elements with
distributed loadings, masses, and stiffnesses. Therefore, the mathematical
description must be more sophisticated using partfal differential equations.

Consider the small vibratfons of a mechanfcal system about its trivial
equilibrium position caused by an external perturbation. The mathematical
formulation of this problem is given by

wiz, t) + E[w(z, t)] + pClwlz, t)] = Flz, t), ' (m
U [w(z, €)1ty = 0, <= 1,2,....2n, | @
wiz, 0) = flx), wlz, 0) = glx). . (3)

Eq. (1) represents a partial differential equation, eq. (2) stands for the
boundary conditions, and eq. (3) for the fnitial conditions.

Furthermore, in (1), v is the mass per unit dimension (length, surface or
volume), v the deflection, = the “"vector” of spatial coordinates, ¢ the time,
P the destabilizing parameter, £ a linear differential operator of order 2n
describing the elastic properties of the system, ¢ a linear differential
operator of maximum order 2n-2, and F the function modelling the external



perturbation of the system. Finally, () denotes double differentiation with
respect to time.

In (2), the U, are linear differentia) operators, and {--~)B indicates that
the expression in the curled bracket is to be taken at certain parts of the
boundary B of the system. In (3), f(z) and g(z) are two gfven functions that
are sufficiently smooth and satisfy the boundary conditions, and () denotes

differentiation with respect to time,
The nature of problem (1), (2) and (3) depends on the nature of operator C.

If ¢ is selfadjoint, the whole problem is selfadjoint, i.e. eymetric. If C
is non-selfadjoint, so is the whole problem, and therefore unsymmetric.
In the selfadjoint case, eq. (1) assumes the form

Wiz, t) + Elwlz, ¢)] + Bs[w(z, )] = P(z, t), (9

where the operator ¢ has been replaced by S which is supposed to be self-
adjoint. Boundary and inftial conditions (2), (3) remain unchanged.
Introduce the so-called mode generating problem

-uwiyk(x) + Ely, (2)] + PS[yk(x)] =0, (5)

W, L (=) = 0, (6)

where the Yg k =1,2,3,..., are eigenfunctions representing the modes to
problem (1}, (2}, (3), and the w are the corresponding eigenvalues. By
virtue of the selfadjointness of (4), (5) the functions Yy and the eigenvalues
w, are real valued. Moreover, the Yy are orthonormal so that
=6, ., 7
[ykyjd’ K %)

S . .
where S 1s'the domain of integration of the system, and & . is the Kronecker

symbol. Also, the Yy are uniformiy bounded. Hence,
lyki < M, (8)

where M is an appropriate constant. Finally, owing to well-known expansion
theorems (ref.10), the Yy form a relative complete system. Consequently,

fle) = Jay (=)s glz) = by (<), (9)
1 1



wp mm——

10

as all real valued, continuous functions that satisfy the boundary conditions
(2), i.e. (6), are expandable in terms of the Y Using the orthonormality of
the “coordinate functions" y,, the coefficients a. and b, in (9) are obtained
as

a, = Iyi(x)f(x)dx, b, = fy,;(x)g(x)dm (10)
S s

By means of Mercer's theorem it can also be shown that

plexe | an

w?

1
As will be seen, all these conditions are sufficient to warrant applic-

ability of the modal approach.

' By means of Laplace transformation, eq. (4) can be changed into

s

wp% + E[D] + ps[w] = F (12)

if one assumes the initial conditions to be homogeneous (i.e. £ =g =0). In
(12),

e-ptw(:c, t)dt, Flz, p) = Je-ptl?(a:, t)dt. (13)
0

w(z, p) =

= L,

Expand » and 7 in terms of the coordinate functions Yy in order to obtain
w(z, p) = 14, (p)y, (=), (14)
k

How o) = I (Phygle) (1)

- The coefficients A in (14) a;‘e yet undetermined. The coefficients Bk in
(18) can to the contrary be found as

Blp) = Bz, plyyfo)ds (16)
. S

owing to (7).
Using (14) and (15) in (12) yields

upty, + E(JA + psja = . 17
D + BllAd] Bslinnd = Py an

Because £ and ¢ are linear, (17) can be rewritten as



});Ak{“pzyk + Bly, 1 + psly, 1) = ;Bkyk-
From (5) follows
'E[yk] + psly, ] = wly,.
Substituting (19) in (18) yields
I Lu(p? + )y ] = 1By
k k
Comparing coefficients of Yk leads to

By

P2+ v}

.

=1
A =y

Hence, by virtue of (14) and (21),

B, (p)
2z, p) = kT
v b l{ u(p? + wf)

Owing to (16), (22) changes into

Y le).

(x)
calzyp ) = ) i3

F(e, ply, (e)de.
ku(pz‘*wi)«( ’ PlYy -

S
Applying inverse Laplace transformation to (23) yields

t
x)y, (£)
w(zx, t) = Zf[ zkﬁ;%gk—i— sin mk(t - ©)P(E, 1)drde.
kSO k .

Integration by parts with respect to t replaces (24) by

t
(2)y, (£) -
wlz, t) = z” TV cos e - o) et g

2
ks0 oy

X )y, (€) )
. IEJ Y (x yk(E F(g’ t)dg _ z[ yk(x)yk(E ‘F(E' o) cos mktds.
S

2
wwy kS LCH

Yet, by virtue of (8) and (11),

11

(18)

(19)

{20)

(21)

(22)

(23)

(24)

(25)



