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Preface

My original intention in this work was to provide in one reasonably
convenient place a good share of the material with which a practicing
chemical infrared spectroscopist would wish to be familiar. While
its preparation was in progress, however, it became obvious that it
would require far longer to compiete than originally estimated and
that the field of infrared spectroscopy was changing rapidly enough to
make the earlier sections obsolete before the whole work was finished.
Accordingly, the decision was made to present the work in two volumes,
into which it naturally divides: Volume I on experimental techniques
and background theory and Volume II on speetral interpretation.
This volume is essentially a synthesis of the experience of the infra-
red section of the Chemical Physics Research Laboratory of The Dow
Chemical Company. It is not primarily intended as a textbook but
rather as a practical guide to the techniques by which infrared spectro-
scopy is applied to the problems of chemistry. An extensive bibli-
ography has been omitted, for references have already been supplied in
other works (see, especially, Lecomte’s treatise on infrared spectro-
scopy in Handbuch der Physik); selected references have been given
solely for the purpose of guiding the reader to discussions on particular
points more extensive than those that fall within the scope of this work.
I have avoided discussion of commercial spectroscopic equipment and
concentrated instead on general principles. This was possible because
nearly all of the equipment in our laboratory was constructed there;
all spectra and data presented in this volume have been obtained with
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spectrometers designed and built by L. W. Herscher and his associates
in our laboratory.

This work can only be properly described as multiauthored, for
nearly all of its chapters have been influenced both generally and
specifically by several people. It is a real pleasure to acknowledge
their contributions:

The advice of H. D. Ruhl, A. M. Bartz, and especially L. W.
Herscher has been most helpful in the preparation of Chapters 3 and 4
on infrared instrumentation,

Chapter 5, dealing with sample preparation techniques, is to a large
extent the synthesis of the experience in our laboratory over many
years and is the product of its many workers, both past and present.
The list of contributors here is far too long to be meaningful, but to
each sincere thanks are due nonetheless.

Association with N. Wright over several years provided much of the
stimulation for Chapter 6 on the aspects of quantitative analysis.
His pioneer work in this field is well known. My thanks are also
extended to J. R. Scherer and J. Overend for discussions on the subject
of integrated intensities.

The techniques of difference spectroscopy and aqueous solutions
covered in Chapter 7 were originally conceived by N. Wright and have
been developed and expanded by D. S. Erley.

It would not have been possible for me to prepare Chapter 8, a con-
densed theory of polyatomic vibrational spectra, without the patient
instruction in these subjects by J. Overend and J. R. Scherer. How-
ever, full responsibility for any errors or misleading impressions belongs
to me alone.

The permission of The Dow Chemical Company to prepare this work
for publication and the extensive use made of their facilities are grate-
fully acknowledged.

The encouragement and stimulation of Professors B, L. Crawford
and S. W. Fenton had much to do with the initial decision to prepare
this work, and I am indebted to them for many helpful discussions
and suggestions in its preparation. Continued association with them
in teaching the summer infrared courses at the University of Minnesota
is a rewarding and pleasant experience. The pedagogical nature of
the material included herein and its order of presentation is close to
the lecture material presented in this course.

I take great pleasure in thanking R. M. Hexter of the Mellon Insti-
tute for his conscientious critical review of this work while in prepara-
tion. Few authors, I think, have been so fortunate as a result of their
publisher’s choice of reviewer.
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This work owes its principal inspiration to N. Wright, director of the
Chemical Physics Research Laboratory of The Dow Chemical Com-
pany. Although he will deny it, he could and should have prepared
it himself many years ago. It is a rare privilege to work in his
laboratory.

The unfailing cooperation and understanding of Mrs. Joyce B. Potts
during the preparation of this book has made it not only possible but &
pleasant task as well.

Midland, Michigan W. J. Ports, JE.
July 1963
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1

The nature and properties
of infrared radiation

Infrared radiation is usually defined as that electromagnetic radiation
whose wavelength is between the limits of 0.7 and ~500 x. Radia-
tion shorter than 0.7 u falls in the visible region, whereas radiation
of wavelengths greater than ~500 u begins to fall within the purview
of those concerned with microwave radiation and can be generated by
strictly electronic apparatus. Later we shall subdivide this larger
region of the electromagnetic spectrum into smaller regjons, and we
shall see which are of most interest for chemical analysis and structure
determination and why.

I. Fundamental properties of electromagnetic radiation

Since infrared light is a form of electromagnetic radiation, let us
first review some of the simple fundamental properties of such radia-
tion. An elementary understanding of it is. necessary before we can
proceed to describe its interaction with matter. Here, and in subse-
quent chapters, the results of quantum theory and other advanced

- coneepts of physics are presented without proof; the reader is referred
to appropriate texts for this material.

A. Wave nature of light

Before the quantum theory was~emmeunded, physicists were able
to explain most of the propenMesid light hPpostulating it to be an
alternating electric field of yErg Bigh frequemcy which moves in the
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direction of the light propagation. A moving electric field implies a
moving magnetic field perpendicular to it (see any text on electro-
magnetic radiation) ; hence light radiation was pictured as a combina-
tion of an alternating electric field and magnetic field:

s_]L_,N

+

where 7 represents the instantaneous electric vector, S — N represents

the instantaneous magnetic vector, the direction of light propagation
being toward the reader. Further, this eleetric field motion was
visualized as a wave motion (sine funection). The maximum points

on this curve of wave motion represent the electric vector pointing
upward; the minimum points represent the electric vector pointing
downward. (As already mentioned, specification of the electric
component of radiation implies the magnetic component; hence we
ghall ignore it in our discussion. It is the electric component that
concerns us.)

B. Wavelength

The linear distance between two successive maxima (or minima)
of the wave motion is termed the wavelength, usually abbreviated .

This property explained well the diffraction effects of light (see any
elementary physics text) and was assumed to be a fundamental prop-
erty of light radiation. The specification of wavelength was found
sufficient to describe completely any type of monochromatic radiation,
and the properties of a given sort of radiation could all be deduced
from the statement of wavelength alone.
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C. Frequency

Another property of light radiation, which is not independent of
wavelength, but related to it, as we shall see, is the frequency. The
frequency of monochromatic radiation is the number of times per
second that the electric vector goes through a complete cycle of direc-
tion change (from plus to zero to minus to zero to plus). The classical
wave-motion concept of light defines frequency as the value of »
in the equation

E = Asin 2xs, (1-1)

where E is the instantaneous electric vector, A is a vector whose
length is proportional to the square root of light intensity, ¢ is time.

D. Velocity and the relation between
wavelength and frequency

All electromagnetic radiation, no matter what its wavelength or
direction of propagation, moves (in a vacuum) with a constant velocity.
This universal constant of nature is abbreviated ¢, has the value
3 X 10'® cm/sec, and is the basis for the relation between wavelength
and frequency. Consider a fixed point past which radiation is moving
(as a wave motion). The number of maximsa passing the fixed point

¢
AAAVAVAVAY

D ——

per second is the frequency, the distance bétween ,'érests is the wave-
length. Hence the velocity of propagation is

Av =c¢ =3 X 10'%cm/sec (1-2)
(A in centimeters, » in cycles per second). Wavelength and frequency
are therefore not independent; specification of one implies the value
of the other.

E. Quantum nature of light

The foregoing classical concept visualizes light radiation as a con-
linuous wave motion. This postulate explained satisfactorily the
properties of light radiation, except for what was known in blackbody
radiation theory as the “ultraviolet catastrophy”: the Rayleigh-Jeans
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equation describing blackbody radiation energy, deduced from the
continuous wave picture just described, predicted that the energy
emitted by a body at finite temperature became large without bounds
as the wavelength approached zero, clearly not in accord with expeti-
mental facts. This difficulty was overcome by Planck, who assumed
that electromagnetic radiation was nof continuous but was emitted
by its source in discrete units, called quanta. Modern quantum theory
predicts, and various physical experiments have consistently shown,
that the energy of a single light quantum is given by

E = hy, (1-3)

where E is energy in ergs, v is frequency of the radiation in cycles per
second, and h, Planck’s constant, a universal constant of nature,
which has the value 6.62 X 10™%7 erg-sec.

The earlier results of classical physics demand a wave nature
to light; quantum theory demands that light exist in diserete units,
or quanta, of energy. One way to visualize radiation endowed
with both these properties simultaneously is to picture a light quan-
tum as a ‘“wave packet,’” where A\, the wavelength, is the distance

N

e

o

between successive maxima, as before, and the frequency » is the
number of complete cycles of electric field change per second or
the number of maxima passing a fixed point per second. These
“wave packets,” or light quanta, move in space with constant velocity,
¢ = 3 X 10!° cm/sec = A», as before.

The result of the quantum theory that we must bear in mind is
that the energy of a quantum of light is completely specified by and
is directly proportional to the frequency (equation 1-3). As we shall
see, this most important relation forms the basis of interpretive
spectroscopy. Had quantum theory come into being before light
diffraction studies, it is quite likely that the use of wavelength in
describing light would not have become so prevalent, frequency
would have been used from the beginning in the science of spectros-
copy, and there would not be the awkward situation of mixed usage
of wavelength and frequency in spectroscopic practice that, alas,
exists today.
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F. Units used in spectroscopy

Although wavelength units as large as the centimeter and even the
meter are convenient in the radio frequency end of the electromagnetic
spectrum, the optieal region of the spectrum is more conveniently
described in smaller units of wavelength. In the infrared region of the
spectrum wavelength is usually expressed in microns, abbreviated u;
1 g = 107° mm. Visible and ultraviolet spectroscopists commonly
prefer to express wavelengths in millimicrons, mu; 1 mu = 1073 4 =
107° mm. In the far ultraviolet region and the x-ray region of the
electromagnetic spectrum wavelength is normally expressed in Ang—
strom units, £; 1 & = 107" mu = 10~% em.

Even in the radio frequency end of the spectrum the frequency
unit cycles per second is too small and megacycles per second is com-
monly used. In the optical region of the spectrum the frequencies
are so high that their numbers expressed in megacycles per second
tend to become unwieldy. A convenient frequency unit now uni-
versally employed in optical spectroscopy is the number of waves per
centimeter, or the wave number, as it is usually called. Consideration
of the sketch on p. 3 and equation 1-2 shows that the number of waves
per centimeter, w, is

w = - (1-4)

where » is frequency in cycles per second and c is the velocity of light,
3 X 10'® em/sec. The dimensions of « are centimeters™! ; hence o
can be expressed in units of reciprocal centimeters; the frequency is
spoken of in “so many reciprocal centimeters,” and in writing this
frequency measure is abbreviated “cm™!.”

Equation 1-2 now becomes A *cw = ¢, or A\w = 1. If wavelength
is expressed in microns in place of centimeters, this equation is

Ao = 10%. (1-5)

As we have already mentioned, frequency is the more useful con-
cept for specifying light radiation, as it is directly proportional to
light energy, whereas wavelength is inversely proportional to energy.
The infrared literature is rapidly going over to exclusive use of fre-
quency (in units of em™!); but many infrared spectroscopists still
employ wavelength (x), most infrared spectra are still published on a
scale linear in wavelength, and upward of 70% of the infrared spec-
trometers sold are equipped with charts linear in wavelength. Thus
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